[Visual object detection system based on augmented reality and steady-state visual evoked potential].

Meng'ao Guo, Banghua Yang, Yiting Geng, Rongxin Jie, Yonghuai Zhang, Yanyan Zheng
{"title":"[Visual object detection system based on augmented reality and steady-state visual evoked potential].","authors":"Meng'ao Guo, Banghua Yang, Yiting Geng, Rongxin Jie, Yonghuai Zhang, Yanyan Zheng","doi":"10.7507/1001-5515.202403041","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects' brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"684-691"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202403041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects' brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[基于增强现实和稳态视觉诱发电位的视觉物体检测系统]。
本研究探讨了一种基于增强现实(AR)环境和稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统。该系统旨在促进在现实生活场景中通过视觉凝视选择现实世界中的物体。通过将物体检测技术和 AR 技术相结合,该系统增强了真实物体的视觉效果,为用户提供视觉刺激,从而诱发相应的大脑信号。然后利用 SSVEP 技术来解读这些大脑信号,并识别用户聚焦的物体。此外,该系统还采用了基于时间窗口的自适应动态滤波器库典型相关分析法来快速解析受试者的大脑信号。实验结果表明,该系统能有效识别 SSVEP 信号,视觉目标识别的平均准确率达到 90.6%。该系统将 SSVEP 信号的应用扩展到了现实生活场景,证明了其在帮助行动不便和身体残疾人士完成目标选择任务方面的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1