Fungal photoinactivation doses for UV radiation and visible light-a data collection.

IF 2.7 Q3 MICROBIOLOGY AIMS Microbiology Pub Date : 2024-08-22 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024032
Anna-Maria Gierke, Petra Vatter, Martin Hessling
{"title":"Fungal photoinactivation doses for UV radiation and visible light-a data collection.","authors":"Anna-Maria Gierke, Petra Vatter, Martin Hessling","doi":"10.3934/microbiol.2024032","DOIUrl":null,"url":null,"abstract":"<p><p>Nearly two million people die each year from fungal infections. Additionally, fungal crop infections jeopardize the global food supply. The use of 254 nm UVC radiation from mercury vapor lamps is a disinfection technique known to be effective against all microorganisms, and there are surveys of published UVC sensitivities. However, these mainly focus on bacteria and viruses. Therefore, a corresponding overview for fungi will be provided here, including far-UVC, UVB, UVA, and visible light, in addition to the conventional 254 nm UVC inactivation. The available literature was searched for photoinactivation data for fungi in the above-mentioned spectral ranges. To standardize the presentation, the mean log-reduction doses were retrieved and sorted by fungal species, spectral range, wavelength, and medium, among others. Additionally, the median log-reduction dose was determined for fungi in transparent liquid media. Approximately 400 evaluable individual data sets from publications over the last 100 years were compiled. Most studies were performed with 254 nm radiation from mercury vapor lamps on <i>Aspergillus niger</i>, <i>Candida albicans</i>, and <i>Saccharomyces cerevisiae</i>. However, the data found were highly scattered, which could be due to the experimental conditions. Even though the number of individual data sets seems large, many important fungi have not been extensively studied so far. For example, UV irradiation data does not yet exist for half of the fungal species classified as \"high priority\" or \"medium priority\" by the World Health Organization (WHO). In addition, researchers should measure the transmission of their fungal suspensions at the irradiation wavelength to avoid the undesirable effects of either absorption or scattering on irradiation results.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"694-722"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nearly two million people die each year from fungal infections. Additionally, fungal crop infections jeopardize the global food supply. The use of 254 nm UVC radiation from mercury vapor lamps is a disinfection technique known to be effective against all microorganisms, and there are surveys of published UVC sensitivities. However, these mainly focus on bacteria and viruses. Therefore, a corresponding overview for fungi will be provided here, including far-UVC, UVB, UVA, and visible light, in addition to the conventional 254 nm UVC inactivation. The available literature was searched for photoinactivation data for fungi in the above-mentioned spectral ranges. To standardize the presentation, the mean log-reduction doses were retrieved and sorted by fungal species, spectral range, wavelength, and medium, among others. Additionally, the median log-reduction dose was determined for fungi in transparent liquid media. Approximately 400 evaluable individual data sets from publications over the last 100 years were compiled. Most studies were performed with 254 nm radiation from mercury vapor lamps on Aspergillus niger, Candida albicans, and Saccharomyces cerevisiae. However, the data found were highly scattered, which could be due to the experimental conditions. Even though the number of individual data sets seems large, many important fungi have not been extensively studied so far. For example, UV irradiation data does not yet exist for half of the fungal species classified as "high priority" or "medium priority" by the World Health Organization (WHO). In addition, researchers should measure the transmission of their fungal suspensions at the irradiation wavelength to avoid the undesirable effects of either absorption or scattering on irradiation results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外线辐射和可见光的真菌光活化剂量--数据收集。
每年有近 200 万人死于真菌感染。此外,作物真菌感染也危及全球粮食供应。使用汞蒸气灯产生的 254 纳米紫外线辐射是一种已知对所有微生物都有效的消毒技术,并且有已公布的紫外线敏感性调查。不过,这些调查主要针对细菌和病毒。因此,除了传统的 254 纳米紫外线灭活之外,这里还将对真菌进行相应的概述,包括远紫外线、UVB、UVA 和可见光。我们在现有文献中搜索了上述光谱范围内真菌的光灭活数据。为使表述标准化,检索了平均对数还原剂量,并按真菌种类、光谱范围、波长和介质等进行了分类。此外,还确定了透明液体培养基中真菌的中位对数还原剂量。从过去 100 年的出版物中汇编了约 400 个可评估的单个数据集。大多数研究都是利用汞蒸气灯发出的 254 纳米辐射对黑曲霉、白色念珠菌和酿酒酵母进行的。不过,发现的数据非常分散,这可能与实验条件有关。尽管单个数据集的数量看似很多,但许多重要真菌至今尚未得到广泛研究。例如,被世界卫生组织(WHO)列为 "高度优先 "或 "中度优先 "的真菌种类中,有一半还没有紫外线照射数据。此外,研究人员应测量真菌悬浮液在辐照波长下的透射率,以避免吸收或散射对辐照结果造成不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
期刊最新文献
Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. Fungal photoinactivation doses for UV radiation and visible light-a data collection. The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer. Marine microfossils: Tiny archives of ocean changes through deep time. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1