{"title":"Harnessing chickpea bacterial endophytes for improved plant health and fitness.","authors":"Yulduzkhon Abdullaeva, Gulsanam Mardonova, Farkhod Eshboev, Massimiliano Cardinale, Dilfuza Egamberdieva","doi":"10.3934/microbiol.2024024","DOIUrl":null,"url":null,"abstract":"<p><p>Endophytic bacteria live asymptomatically inside the tissues of host plants without inflicting any damage. Endophytes can confer several beneficial traits to plants, which can contribute to their growth, development, and overall health. They have been found to stimulate plant growth by enhancing nutrient uptake and availability. They can produce plant growth-promoting substances such as auxins, cytokinins, and gibberellins, which regulate various aspects of plant growth and development. Endophytes can also improve root system architecture, leading to increased nutrient and water absorption. Some endophytes possess the ability to solubilize nutrients, such as phosphorus and potassium, making them more available for plant uptake, and fixing atmospheric nitrogen. Chickpea (<i>Cicer arietinum</i>) is a major legume crop that has mutualistic interactions with endophytes. These endophytes can benefit the chickpea plant in various ways, including higher growth, improved nutrient uptake, increased tolerance to abiotic and biotic stressors, and disease suppression. They can produce enzymes and metabolites that scavenge harmful reactive oxygen species, thus reducing oxidative stress. Moreover, several studies reported that endophytes produce antimicrobial compounds, lytic enzymes, and volatile organic compounds that inhibit the growth of fungal pathogens and trigger systemic defense responses in plants, leading to increased resistance against a broad range of pathogens. They can activate plant defense pathways, including the production of defense-related enzymes, phytoalexins, and pathogenesis-related proteins, thereby providing long-lasting protection. It is important to note that the diversity and function of chickpea-associated endophytes can vary depending on factors such as variety, geographical location, and environmental conditions. The mechanisms behind the plant-beneficial interactions are still being intensively explored. In this review, new biotechnologies in agricultural production and ecosystem stability were presented. Thus, harnessing chickpea endophytes could be exploited in developing drought-resistant cultivars that can maintain productivity in arid and semi-arid environments, crucial for meeting the global demand for chickpeas.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"489-506"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endophytic bacteria live asymptomatically inside the tissues of host plants without inflicting any damage. Endophytes can confer several beneficial traits to plants, which can contribute to their growth, development, and overall health. They have been found to stimulate plant growth by enhancing nutrient uptake and availability. They can produce plant growth-promoting substances such as auxins, cytokinins, and gibberellins, which regulate various aspects of plant growth and development. Endophytes can also improve root system architecture, leading to increased nutrient and water absorption. Some endophytes possess the ability to solubilize nutrients, such as phosphorus and potassium, making them more available for plant uptake, and fixing atmospheric nitrogen. Chickpea (Cicer arietinum) is a major legume crop that has mutualistic interactions with endophytes. These endophytes can benefit the chickpea plant in various ways, including higher growth, improved nutrient uptake, increased tolerance to abiotic and biotic stressors, and disease suppression. They can produce enzymes and metabolites that scavenge harmful reactive oxygen species, thus reducing oxidative stress. Moreover, several studies reported that endophytes produce antimicrobial compounds, lytic enzymes, and volatile organic compounds that inhibit the growth of fungal pathogens and trigger systemic defense responses in plants, leading to increased resistance against a broad range of pathogens. They can activate plant defense pathways, including the production of defense-related enzymes, phytoalexins, and pathogenesis-related proteins, thereby providing long-lasting protection. It is important to note that the diversity and function of chickpea-associated endophytes can vary depending on factors such as variety, geographical location, and environmental conditions. The mechanisms behind the plant-beneficial interactions are still being intensively explored. In this review, new biotechnologies in agricultural production and ecosystem stability were presented. Thus, harnessing chickpea endophytes could be exploited in developing drought-resistant cultivars that can maintain productivity in arid and semi-arid environments, crucial for meeting the global demand for chickpeas.