Predicting peritumoral glioblastoma infiltration and subsequent recurrence using deep-learning-based analysis of multi-parametric magnetic resonance imaging.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI:10.1117/1.JMI.11.5.054001
Sunwoo Kwak, Hamed Akbari, Jose A Garcia, Suyash Mohan, Yehuda Dicker, Chiharu Sako, Yuji Matsumoto, MacLean P Nasrallah, Mahmoud Shalaby, Donald M O'Rourke, Russel T Shinohara, Fang Liu, Chaitra Badve, Jill S Barnholtz-Sloan, Andrew E Sloan, Matthew Lee, Rajan Jain, Santiago Cepeda, Arnab Chakravarti, Joshua D Palmer, Adam P Dicker, Gaurav Shukla, Adam E Flanders, Wenyin Shi, Graeme F Woodworth, Christos Davatzikos
{"title":"Predicting peritumoral glioblastoma infiltration and subsequent recurrence using deep-learning-based analysis of multi-parametric magnetic resonance imaging.","authors":"Sunwoo Kwak, Hamed Akbari, Jose A Garcia, Suyash Mohan, Yehuda Dicker, Chiharu Sako, Yuji Matsumoto, MacLean P Nasrallah, Mahmoud Shalaby, Donald M O'Rourke, Russel T Shinohara, Fang Liu, Chaitra Badve, Jill S Barnholtz-Sloan, Andrew E Sloan, Matthew Lee, Rajan Jain, Santiago Cepeda, Arnab Chakravarti, Joshua D Palmer, Adam P Dicker, Gaurav Shukla, Adam E Flanders, Wenyin Shi, Graeme F Woodworth, Christos Davatzikos","doi":"10.1117/1.JMI.11.5.054001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated.</p><p><strong>Approach: </strong>We developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence.</p><p><strong>Results: </strong>Leave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48).</p><p><strong>Conclusions: </strong>The proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model's generalizability and reproducibility.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 5","pages":"054001"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.5.054001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated.

Approach: We developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence.

Results: Leave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48).

Conclusions: The proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model's generalizability and reproducibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于深度学习的多参数磁共振成像分析预测瘤周胶质母细胞瘤浸润和后续复发。
目的:胶质母细胞瘤(GBM)是最常见的侵袭性原发性成人脑肿瘤。标准的治疗方法是针对增大的肿瘤块进行手术切除,然后进行辅助化放疗。然而,恶性细胞往往会超出增强的肿瘤边界,浸润瘤周水肿。传统的有监督机器学习技术在预测肿瘤浸润范围方面具有潜力,但由于需要大量资源来生成专家划定的感兴趣区(ROI),以便对最有可能和最不可能浸润的组织进行模型训练,因此受到了阻碍:我们开发了一种方法,将专家知识与基于训练的数据增强相结合,自动生成大量训练示例,通过预测图提高模型预测肿瘤浸润的准确性。这种图谱可用于有针对性的超全切手术和其他疗法,对浸润组织进行密集而有针对性的治疗可能会使患者受益。我们将我们的方法应用于术前多参数磁共振成像(mpMRI)扫描,该扫描来自一个多机构联盟(精准诊断放射组学特征)的 229 位患者的子集,并在随后的病理证实复发扫描中对模型进行了测试:使用手术前的初始扫描结果对肿瘤浸润预测模型进行训练和评估,并将生成的预测图与通过切除术后组织分析确认复发的后续 mpMRI 扫描结果进行比较。该模型的性能由六个机构的体素化几率(ORs)来衡量:宾夕法尼亚大学(OR:9.97)、俄亥俄州立大学(OR:14.03)、凯斯西储大学(OR:8.13)、纽约大学(OR:16.43)、托马斯杰斐逊大学(OR:8.22)和里奥霍尔特加大学(OR:19.48):所提出的模型表明,使用深度学习进行 mpMRI 分析可以预测 GBM 患者肿瘤周围脑区的浸润情况,而无需使用专家的 ROI 图纸来训练模型。每个机构的结果都证明了该模型的通用性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1