{"title":"Asymptotically exact fit for linear mixed model in genetic association studies.","authors":"Yongtao Guan, Daniel Levy","doi":"10.1093/genetics/iyae143","DOIUrl":null,"url":null,"abstract":"<p><p>The linear mixed model (LMM) has become a standard in genetic association studies to account for population stratification and relatedness in the samples to reduce false positives. Much recent progresses in LMM focused on approximate computations. Exact methods remained computationally demanding and without theoretical assurance. The computation is particularly challenging for multiomics studies where tens of thousands of phenotypes are tested for association with millions of genetic markers. We present IDUL and IDUL† that use iterative dispersion updates to fit LMMs, where IDUL† is a modified version of IDUL that guarantees likelihood increase between updates. Practically, IDUL and IDUL† produced identical results, both are markedly more efficient than the state-of-the-art Newton-Raphson method, and in particular, both are highly efficient for additional phenotypes, making them ideal to study genetic determinants of multiomics phenotypes. Theoretically, the LMM likelihood is asymptotically unimodal, and therefore the gradient ascent algorithm IDUL† is asymptotically exact. A software package implementing IDUL and IDUL† for genetic association studies is freely available at https://github.com/haplotype/IDUL.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639154/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae143","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The linear mixed model (LMM) has become a standard in genetic association studies to account for population stratification and relatedness in the samples to reduce false positives. Much recent progresses in LMM focused on approximate computations. Exact methods remained computationally demanding and without theoretical assurance. The computation is particularly challenging for multiomics studies where tens of thousands of phenotypes are tested for association with millions of genetic markers. We present IDUL and IDUL† that use iterative dispersion updates to fit LMMs, where IDUL† is a modified version of IDUL that guarantees likelihood increase between updates. Practically, IDUL and IDUL† produced identical results, both are markedly more efficient than the state-of-the-art Newton-Raphson method, and in particular, both are highly efficient for additional phenotypes, making them ideal to study genetic determinants of multiomics phenotypes. Theoretically, the LMM likelihood is asymptotically unimodal, and therefore the gradient ascent algorithm IDUL† is asymptotically exact. A software package implementing IDUL and IDUL† for genetic association studies is freely available at https://github.com/haplotype/IDUL.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.