Genome-wide identification and data mining reveals major-latex protein (MLP) from the PR-10 protein family played defense-related roles against phytopathogenic challenges in cassava (Manihot esculenta Crantz).
{"title":"Genome-wide identification and data mining reveals major-latex protein (MLP) from the PR-10 protein family played defense-related roles against phytopathogenic challenges in cassava (Manihot esculenta Crantz).","authors":"Unchera Viboonjun, Rawit Longsaward","doi":"10.1007/s10709-024-00211-6","DOIUrl":null,"url":null,"abstract":"<p><p>Despite being identified in previous articles, the pathogenesis-related 10 (PR-10) protein remains relatively overlooked and has yet to be fully characterized in numerous plant species. This research employs a comprehensive data mining approach to in silico characterize PR-10 proteins in cassava, a vital crop plant globally. In this study, the focus was on in silico identified 53 cassava PR-10 proteins, which can be categorized into two main subgroups: 34 major latex proteins (MLPs) and 13 major allergen proteins, Pru ar 1, based on their phylogenetic relationship. The genome collinearity analysis with the rubber tree showed a possible evolutionary relationship of the PR-10 gene between these two Euphorbiaceae species, specifically on their chromosome 15. Notably, MLP423 and other MLP proteins were identified in various previously published cassava transcriptome datasets in response to biotic treatments from diverse phytopathogens, including anthracnose fungus, viruses, and bacterial blight. Ligand prediction and molecular docking of three MLP423 proteins have revealed potential interaction with cytokinin and abscisic acid hormones. Their expressions and predicted binding affinities are discussed here, highlighting their role as contributors to cassava's defense network against key diseases.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":" ","pages":"145-158"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-024-00211-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite being identified in previous articles, the pathogenesis-related 10 (PR-10) protein remains relatively overlooked and has yet to be fully characterized in numerous plant species. This research employs a comprehensive data mining approach to in silico characterize PR-10 proteins in cassava, a vital crop plant globally. In this study, the focus was on in silico identified 53 cassava PR-10 proteins, which can be categorized into two main subgroups: 34 major latex proteins (MLPs) and 13 major allergen proteins, Pru ar 1, based on their phylogenetic relationship. The genome collinearity analysis with the rubber tree showed a possible evolutionary relationship of the PR-10 gene between these two Euphorbiaceae species, specifically on their chromosome 15. Notably, MLP423 and other MLP proteins were identified in various previously published cassava transcriptome datasets in response to biotic treatments from diverse phytopathogens, including anthracnose fungus, viruses, and bacterial blight. Ligand prediction and molecular docking of three MLP423 proteins have revealed potential interaction with cytokinin and abscisic acid hormones. Their expressions and predicted binding affinities are discussed here, highlighting their role as contributors to cassava's defense network against key diseases.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.