Isabell Lang, Oliver Paulus, Olena Zaitseva, Harald Wajant
{"title":"A Novel Tetravalent CD95/Fas Fusion Protein With Superior CD95L/FasL Antagonism.","authors":"Isabell Lang, Oliver Paulus, Olena Zaitseva, Harald Wajant","doi":"10.1002/prot.26741","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of CD95/Fas activation is currently under clinical investigation as a therapy for glioblastoma multiforme and preclinical studies suggest that disruption of the CD95-CD95L interaction could also be a strategy to treat inflammatory and neurodegenerative disorders. Besides neutralizing anti-CD95L/FasL antibodies, mainly CD95ed-Fc, a dimeric Fc fusion protein of the extracellular domain of CD95 (CD95ed), is used to prevent CD95 activation. In view of the fact that full CD95 activation requires CD95L-induced CD95 trimerization and clustering of the resulting liganded CD95 trimers, we investigated whether fusion proteins of the extracellular domain of CD95 with a higher valency than CD95ed-Fc have an improved CD95L-neutralization capacity. We evaluated an IgG1(N297A)-based tetravalent CD95ed fusion protein which was obtained by replacing the variable domains of IgG1(N297A) with CD95ed (CD95ed-IgG1(N297A)) and a hexavalent variant obtained by fusion of CD95ed with a TNC-Fc(DANA) scaffold (CD95ed-TNC-Fc(DANA)) promoting hexamerization. The established N297A and DANA mutations were used to minimize FcγR binding of the constructs under maintenance of neonatal Fc receptor (FcRn) binding. Size exclusion high-performance liquid chromatography indicated effective assembly of CD95ed-IgG1(N297A). More important, CD95ed-IgG1(N297A) was much more efficient than CD95ed-Fc in protecting cells from cell death induction by human and murine CD95L. Surprisingly, despite its hexavalent structure, CD95ed-TNC-Fc(DANA) displayed an at best minor improvement of the capacity to neutralize CD95L suggesting that besides valency, other factors, such as spatial organization and agility of the CD95ed domains, play also a role in neutralization of CD95L trimers by CD95ed fusion proteins. More studies are now required to evaluate the superior CD95L-neutralizing capacity of CD95ed-IgG1(N297A) in vivo.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"441-451"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26741","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of CD95/Fas activation is currently under clinical investigation as a therapy for glioblastoma multiforme and preclinical studies suggest that disruption of the CD95-CD95L interaction could also be a strategy to treat inflammatory and neurodegenerative disorders. Besides neutralizing anti-CD95L/FasL antibodies, mainly CD95ed-Fc, a dimeric Fc fusion protein of the extracellular domain of CD95 (CD95ed), is used to prevent CD95 activation. In view of the fact that full CD95 activation requires CD95L-induced CD95 trimerization and clustering of the resulting liganded CD95 trimers, we investigated whether fusion proteins of the extracellular domain of CD95 with a higher valency than CD95ed-Fc have an improved CD95L-neutralization capacity. We evaluated an IgG1(N297A)-based tetravalent CD95ed fusion protein which was obtained by replacing the variable domains of IgG1(N297A) with CD95ed (CD95ed-IgG1(N297A)) and a hexavalent variant obtained by fusion of CD95ed with a TNC-Fc(DANA) scaffold (CD95ed-TNC-Fc(DANA)) promoting hexamerization. The established N297A and DANA mutations were used to minimize FcγR binding of the constructs under maintenance of neonatal Fc receptor (FcRn) binding. Size exclusion high-performance liquid chromatography indicated effective assembly of CD95ed-IgG1(N297A). More important, CD95ed-IgG1(N297A) was much more efficient than CD95ed-Fc in protecting cells from cell death induction by human and murine CD95L. Surprisingly, despite its hexavalent structure, CD95ed-TNC-Fc(DANA) displayed an at best minor improvement of the capacity to neutralize CD95L suggesting that besides valency, other factors, such as spatial organization and agility of the CD95ed domains, play also a role in neutralization of CD95L trimers by CD95ed fusion proteins. More studies are now required to evaluate the superior CD95L-neutralizing capacity of CD95ed-IgG1(N297A) in vivo.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.