Advances in magnesium-containing bioceramics for bone repair.

Biomaterials Translational Pub Date : 2024-03-28 eCollection Date: 2024-01-01 DOI:10.12336/biomatertransl.2024.01.002
Lei Qi, Tong Zhao, Jinge Yan, Weiwen Ge, Weidong Jiang, Jing Wang, Mazaher Gholipourmalekabadi, Kaili Lin, Xiuhui Wang, Lei Zhang
{"title":"Advances in magnesium-containing bioceramics for bone repair.","authors":"Lei Qi, Tong Zhao, Jinge Yan, Weiwen Ge, Weidong Jiang, Jing Wang, Mazaher Gholipourmalekabadi, Kaili Lin, Xiuhui Wang, Lei Zhang","doi":"10.12336/biomatertransl.2024.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstruction of bone defects or fractures caused by ageing, trauma and tumour resection is still a great challenge in clinical treatment. Although autologous bone graft is considered as gold standard, the source of natural bone is limited. In recent years, regenerative therapy based on bioactive materials has been proposed for bone reconstruction. Specially, numerous studies have indicated that bioactive ceramics including silicate and phosphate bioceramics exhibit excellent osteoinductivity and osteoconductivity, further promote bone regeneration. In addition, magnesium (Mg) element, as an indispensable mineral element, plays a vital role in promoting bone mineralisation and formation. In this review, different types of Mg-containing bioceramics including Mg-containing calcium phosphate-based bioceramics (such as Mg-hydroxyapatite, Mg-biphasic calcium phosphate), Mg-containing calcium silicate-based bioceramics (such as Mg<sub>2</sub>SiO<sub>4</sub>, Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub> and Mg-doped bioglass), Mg-based biocements, Mg-containing metal/polymer-bioceramic composites were systematacially summarised. Additionally, the fabrication technologies and their materiobiological effects were deeply discussed. Clinical applications and perspectives of magnesium-containing bioceramics for bone repair are highlighted. Overall, Mg-containing bioceramics are regarded as regenerative therapy with their optimised performance. Furthermore, more in-depth two-way researches on their performance and structure are essential to satisfy their clinical needs.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"5 1","pages":"3-20"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2024.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstruction of bone defects or fractures caused by ageing, trauma and tumour resection is still a great challenge in clinical treatment. Although autologous bone graft is considered as gold standard, the source of natural bone is limited. In recent years, regenerative therapy based on bioactive materials has been proposed for bone reconstruction. Specially, numerous studies have indicated that bioactive ceramics including silicate and phosphate bioceramics exhibit excellent osteoinductivity and osteoconductivity, further promote bone regeneration. In addition, magnesium (Mg) element, as an indispensable mineral element, plays a vital role in promoting bone mineralisation and formation. In this review, different types of Mg-containing bioceramics including Mg-containing calcium phosphate-based bioceramics (such as Mg-hydroxyapatite, Mg-biphasic calcium phosphate), Mg-containing calcium silicate-based bioceramics (such as Mg2SiO4, Ca2MgSi2O7 and Mg-doped bioglass), Mg-based biocements, Mg-containing metal/polymer-bioceramic composites were systematacially summarised. Additionally, the fabrication technologies and their materiobiological effects were deeply discussed. Clinical applications and perspectives of magnesium-containing bioceramics for bone repair are highlighted. Overall, Mg-containing bioceramics are regarded as regenerative therapy with their optimised performance. Furthermore, more in-depth two-way researches on their performance and structure are essential to satisfy their clinical needs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于骨修复的含镁生物陶瓷的进展。
重建因衰老、创伤和肿瘤切除造成的骨缺损或骨折仍是临床治疗中的一大挑战。虽然自体骨移植被认为是金标准,但天然骨的来源有限。近年来,人们提出了基于生物活性材料的骨重建再生疗法。特别是,大量研究表明,包括硅酸盐和磷酸盐生物陶瓷在内的生物活性陶瓷具有良好的骨诱导性和骨传导性,可进一步促进骨再生。此外,镁(Mg)元素作为一种不可或缺的矿物质元素,在促进骨矿化和骨形成方面起着至关重要的作用。在这篇综述中,系统总结了不同类型的含镁生物陶瓷,包括含镁磷酸钙基生物陶瓷(如羟基磷灰石镁、双相磷酸钙镁)、含镁硅酸钙基生物陶瓷(如 Mg2SiO4、Ca2MgSi2O7 和掺镁生物玻璃)、镁基生物水泥、含镁金属/聚合物生物陶瓷复合材料。此外,还深入讨论了制造技术及其材料生物学效应。重点介绍了含镁生物陶瓷在骨修复方面的临床应用和前景。总之,含镁生物陶瓷以其优化的性能被视为一种再生疗法。此外,对其性能和结构进行更深入的双向研究对于满足临床需求至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
9
期刊最新文献
"Yin-Yang philosophy" for the design of anticancer drug delivery nanoparticles. Abalone shell-derived Mg-doped mesoporous hydroxyapatite microsphere drug delivery system loaded with icariin for inducing apoptosis of osteosarcoma cells. Advanced nanoparticles in osteoarthritis treatment. Artificial intelligence-enabled studies on organoid and organoid extracellular vesicles. Corrigendum: Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1