Investigation of Aberrant Basaloid Cells in a Rat Model of Lung Fibrosis.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in bioscience (Landmark edition) Pub Date : 2024-08-22 DOI:10.31083/j.fbl2908305
Emanuela Bocchi, Vanessa Pitozzi, Silvia Pontis, Paola L Caruso, Sofia Beghi, Mariafrancesca Caputi, Marcello Trevisani, Francesca Ruscitti
{"title":"Investigation of Aberrant Basaloid Cells in a Rat Model of Lung Fibrosis.","authors":"Emanuela Bocchi, Vanessa Pitozzi, Silvia Pontis, Paola L Caruso, Sofia Beghi, Mariafrancesca Caputi, Marcello Trevisani, Francesca Ruscitti","doi":"10.31083/j.fbl2908305","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease (ILD) whose cause and pathogenesis are not yet well understood. Until now, no animal model of lung fibrosis succeeds in recapitulating all IPF features, thus the use of different rodent models is essential for the evaluation and development of new effective pharmacological treatments. Recently, the alveolar epithelial dysfunction has been emphasized in the etiopathogenesis context of IPF. Remarkably, the role of an aberrant basaloid cell type, primarily found in humans and confirmed in mice, seems to be crucial in the establishment and progression of the disease/model. Our work aimed to characterize for the first time this cell population in a rat model of lung fibrosis induced by a double bleomycin (BLM) administration, demonstrating the translational value of the model and its potential use in the testing of effective new drugs.</p><p><strong>Methods: </strong>Rats received an intratracheal BLM administration at day 0 and 4. Animals were sacrificed 21 and 28 days post-BLM. The fibrosis evaluation was carried out through histological (Ashcroft score and automatic image analysis) and immunoenzymatic analysis. Immunofluorescence was used for the characterization of the aberrant basaloid cells markers.</p><p><strong>Results: </strong>Lung histology revealed an increase in severe grades of Ashcroft scores and areas of fibrosis, resulting in a rise of collagen deposition at both the analyzed time-points. Immunofluorescence staining indicated the presence of KRT8+ cells in bronchial epithelial cells from both controls (saline, SAL) and BLM-treated animals. Interesting, KRT8+ cells were found exclusively in the fibrotic parenchyma (confirmed by the alpha-smooth muscle actin (α-SMA) staining for myofibroblasts) of BLM-treated animals. Moreover, KRT8+ cells co-expressed markers as Prosurfactant protein C (Pro-SPC) and Vimentin, suggesting their intermediate state potentially originating from alveolar type II (AT2) cells, and participating to the abnormal epithelial-mesenchymal crosstalk.</p><p><strong>Conclusion: </strong>Previous preclinical studies demonstrated the presence of KRT8+ aberrant basaloid-like cells in murine models of lung fibrosis. This work investigated the same cell population in a different rodent (the rat) model of lung fibrosis triggered by a double administration of BLM. Our results provided a further confirmation that, in rats, the intratracheal administration of BLM induced the appearance of a population of cells compatible with the KRT8+ alveolar differentiation intermediate (ADI) cells, as described previously in the mouse. This piece of work enforces previous evidence and further support the use of a rat model of BLM resembling the alveolar epithelial dysfunction to evaluate new clinical candidates for development in IPF.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2908305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease (ILD) whose cause and pathogenesis are not yet well understood. Until now, no animal model of lung fibrosis succeeds in recapitulating all IPF features, thus the use of different rodent models is essential for the evaluation and development of new effective pharmacological treatments. Recently, the alveolar epithelial dysfunction has been emphasized in the etiopathogenesis context of IPF. Remarkably, the role of an aberrant basaloid cell type, primarily found in humans and confirmed in mice, seems to be crucial in the establishment and progression of the disease/model. Our work aimed to characterize for the first time this cell population in a rat model of lung fibrosis induced by a double bleomycin (BLM) administration, demonstrating the translational value of the model and its potential use in the testing of effective new drugs.

Methods: Rats received an intratracheal BLM administration at day 0 and 4. Animals were sacrificed 21 and 28 days post-BLM. The fibrosis evaluation was carried out through histological (Ashcroft score and automatic image analysis) and immunoenzymatic analysis. Immunofluorescence was used for the characterization of the aberrant basaloid cells markers.

Results: Lung histology revealed an increase in severe grades of Ashcroft scores and areas of fibrosis, resulting in a rise of collagen deposition at both the analyzed time-points. Immunofluorescence staining indicated the presence of KRT8+ cells in bronchial epithelial cells from both controls (saline, SAL) and BLM-treated animals. Interesting, KRT8+ cells were found exclusively in the fibrotic parenchyma (confirmed by the alpha-smooth muscle actin (α-SMA) staining for myofibroblasts) of BLM-treated animals. Moreover, KRT8+ cells co-expressed markers as Prosurfactant protein C (Pro-SPC) and Vimentin, suggesting their intermediate state potentially originating from alveolar type II (AT2) cells, and participating to the abnormal epithelial-mesenchymal crosstalk.

Conclusion: Previous preclinical studies demonstrated the presence of KRT8+ aberrant basaloid-like cells in murine models of lung fibrosis. This work investigated the same cell population in a different rodent (the rat) model of lung fibrosis triggered by a double administration of BLM. Our results provided a further confirmation that, in rats, the intratracheal administration of BLM induced the appearance of a population of cells compatible with the KRT8+ alveolar differentiation intermediate (ADI) cells, as described previously in the mouse. This piece of work enforces previous evidence and further support the use of a rat model of BLM resembling the alveolar epithelial dysfunction to evaluate new clinical candidates for development in IPF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究肺纤维化大鼠模型中的异常基底细胞
背景:特发性肺纤维化(IPF)是一种慢性进行性间质性肺病(ILD),其病因和发病机制尚不十分清楚。迄今为止,还没有一种肺纤维化动物模型能成功再现 IPF 的所有特征,因此使用不同的啮齿类动物模型对于评估和开发新的有效药物治疗方法至关重要。最近,肺泡上皮功能障碍在 IPF 的病因发病机制中得到了强调。值得注意的是,一种主要在人类中发现并在小鼠中得到证实的异常基底细胞类型似乎在疾病/模型的建立和发展中起着至关重要的作用。我们的工作旨在首次描述这种细胞群在大鼠双倍博莱霉素(BLM)给药诱导的肺纤维化模型中的特征,证明该模型的转化价值及其在测试有效新药中的潜在用途:方法:第0天和第4天对大鼠进行气管内注射博莱霉素。方法:第 0 天和第 4 天对大鼠进行气管内注射 BLM,BLM 后 21 天和 28 天将动物处死。通过组织学(Ashcroft 评分和自动图像分析)和免疫酶分析进行纤维化评估。免疫荧光用于确定异常基底细胞标记物的特征:结果:肺组织学显示,在分析的两个时间点上,Ashcroft评分的严重等级和纤维化区域都有所增加,导致胶原沉积增加。免疫荧光染色显示,对照组(生理盐水,SAL)和BLM处理组动物的支气管上皮细胞中均存在KRT8+细胞。有趣的是,KRT8+细胞只出现在BLM处理动物的纤维化实质中(经α-平滑肌肌动蛋白(α-SMA)染色证实为肌成纤维细胞)。此外,KRT8+细胞共同表达前表面活性蛋白C(Pro-SPC)和波形蛋白等标记物,表明它们的中间状态可能源于肺泡II型(AT2)细胞,并参与了异常的上皮-间质串联:结论:先前的临床前研究表明,在肺纤维化小鼠模型中存在 KRT8+异常基底样细胞。这项研究在不同的啮齿动物(大鼠)肺纤维化模型中对相同的细胞群进行了调查。我们的研究结果进一步证实,在大鼠中,气管内注射 BLM 会诱导出现与 KRT8+ 肺泡分化中间细胞(ADI)相容的细胞群,正如之前在小鼠中描述的那样。这项研究巩固了之前的证据,并进一步支持使用类似肺泡上皮功能障碍的 BLM 大鼠模型来评估 IPF 新临床候选药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
High Glycolytic Activity Signature Reveals CCNB2 as a Key Therapeutic Target in Triple-Negative Breast Cancer. Inhibiting the NF-κB/DRP1 Axis Affords Neuroprotection after Spinal Cord Injury via Inhibiting Polarization of Pro-Inflammatory Microglia. Repair of Mechanical Cartilage Damage Using Exosomes Derived from Deer Antler Stem Cells. Bacterial Insights: Unraveling the Ocular Microbiome in Glaucoma Pathogenesis. Inhibition of Macrophage Recruitment to Heart Valves Mediated by the C-C Chemokine Receptor Type 2 Attenuates Valvular Inflammation Induced by Group A Streptococcus in Lewis Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1