evolSOM: An R package for analyzing conservation and displacement of biological variables with self-organizing maps.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-08-22 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae124
Santiago Prochetto, Renata Reinheimer, Georgina Stegmayer
{"title":"evolSOM: An R package for analyzing conservation and displacement of biological variables with self-organizing maps.","authors":"Santiago Prochetto, Renata Reinheimer, Georgina Stegmayer","doi":"10.1093/bioadv/vbae124","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Unraveling the connection between genes and traits is crucial for solving many biological puzzles. Ribonucleic acid molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data present a significant challenge.</p><p><strong>Results: </strong>We introduce evolSOM, a novel R package that allows exploring and visualizing the conservation or displacement of biological variables, easing the integration of phenotypic and genotypic attributes. It enables the projection of multi-dimensional expression profiles onto interpretable two-dimensional grids, aiding in the identification of conserved or displaced genes/phenotypes across multiple conditions. Variables displaced together suggest membership to the same regulatory network, where the nature of the displacement may hold biological significance. The conservation or displacement of variables is automatically calculated and graphically presented by evolSOM. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses.</p><p><strong>Availability and implementation: </strong>The package is open-source under the GPL ( <math><mo>≥</mo></math> 3) and is available at https://github.com/sanprochetto/evolSOM, along with a step-by-step vignette and a full example dataset that can be accessed at https://github.com/sanprochetto/evolSOM/tree/main/inst/extdata.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae124"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Unraveling the connection between genes and traits is crucial for solving many biological puzzles. Ribonucleic acid molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data present a significant challenge.

Results: We introduce evolSOM, a novel R package that allows exploring and visualizing the conservation or displacement of biological variables, easing the integration of phenotypic and genotypic attributes. It enables the projection of multi-dimensional expression profiles onto interpretable two-dimensional grids, aiding in the identification of conserved or displaced genes/phenotypes across multiple conditions. Variables displaced together suggest membership to the same regulatory network, where the nature of the displacement may hold biological significance. The conservation or displacement of variables is automatically calculated and graphically presented by evolSOM. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses.

Availability and implementation: The package is open-source under the GPL ( 3) and is available at https://github.com/sanprochetto/evolSOM, along with a step-by-step vignette and a full example dataset that can be accessed at https://github.com/sanprochetto/evolSOM/tree/main/inst/extdata.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
evolSOM:利用自组织图分析生物变量的保存和位移的 R 软件包。
动机揭示基因与性状之间的联系对于解决许多生物学难题至关重要。从这些遗传指令中衍生出来的核糖核酸分子和蛋白质在塑造细胞结构、影响反应和指导行为方面发挥着至关重要的作用。这一基本生物学原理将基因构成与可观察到的性状联系起来,但从这些复杂的多模态数据中整合和提取有意义的关系是一项重大挑战:我们介绍了 evolSOM,这是一个新颖的 R 软件包,可用于探索和可视化生物变量的保持或位移,从而简化表型和基因型属性的整合。它能将多维表达谱投影到可解释的二维网格上,帮助识别在多种条件下保守或移位的基因/表型。一起移位的变量表明属于同一调控网络,移位的性质可能具有生物学意义。evolSOM 可自动计算变量的保留或移位,并以图形方式显示出来。其友好的用户界面和可视化功能提高了复杂网络分析的可访问性:该软件包在 GPL ( ≥ 3) 下开源,可在 https://github.com/sanprochetto/evolSOM 网站上获取,还可在 https://github.com/sanprochetto/evolSOM/tree/main/inst/extdata 网站上获取分步说明和完整的示例数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1