Glycerol-blended chitosan membranes with directional micro-grooves and reduced stiffness improve Schwann cell wound healing.

L Scaccini, A Battisti, D Convertino, D Puppi, M Gagliardi, M Cecchini, I Tonazzini
{"title":"Glycerol-blended chitosan membranes with directional micro-grooves and reduced stiffness improve Schwann cell wound healing.","authors":"L Scaccini, A Battisti, D Convertino, D Puppi, M Gagliardi, M Cecchini, I Tonazzini","doi":"10.1088/1748-605X/ad7562","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine is continuously looking for new natural, biocompatible and possibly biodegradable materials, but also mechanically compliant. Chitosan is emerging as a promising FDA-approved biopolymer for tissue engineering, however, its exploitation in regenerative devices is limited by its brittleness and can be further improved, for example by blending it with other materials or by tuning its superficial microstructure. Here, we developed membranes made of chitosan (Chi) and glycerol, by solvent casting, and micro-patterned them with directional geometries having different levels of axial symmetry. These membranes were characterized by light microscopies, atomic force microscopy (AFM), by thermal, mechanical and degradation assays, and also tested<i>in vitro</i>as scaffolds with Schwann cells (SCs). The glycerol-blended Chi membranes are optimized in terms of mechanical properties, and present a physiological-grade Young's modulus (≈0.7 MPa). The directional topographies are effective in directing cell polarization and migration and in particular are highly performant substrates for collective cell migration. Here, we demonstrate that a combination of a soft compliant biomaterial and a topographical micropatterning can improve the integration of these scaffolds with SCs, a fundamental step in the peripheral nerve regeneration process.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad7562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regenerative medicine is continuously looking for new natural, biocompatible and possibly biodegradable materials, but also mechanically compliant. Chitosan is emerging as a promising FDA-approved biopolymer for tissue engineering, however, its exploitation in regenerative devices is limited by its brittleness and can be further improved, for example by blending it with other materials or by tuning its superficial microstructure. Here, we developed membranes made of chitosan (Chi) and glycerol, by solvent casting, and micro-patterned them with directional geometries having different levels of axial symmetry. These membranes were characterized by light microscopies, atomic force microscopy (AFM), by thermal, mechanical and degradation assays, and also testedin vitroas scaffolds with Schwann cells (SCs). The glycerol-blended Chi membranes are optimized in terms of mechanical properties, and present a physiological-grade Young's modulus (≈0.7 MPa). The directional topographies are effective in directing cell polarization and migration and in particular are highly performant substrates for collective cell migration. Here, we demonstrate that a combination of a soft compliant biomaterial and a topographical micropatterning can improve the integration of these scaffolds with SCs, a fundamental step in the peripheral nerve regeneration process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有定向微槽和较低硬度的甘油混合壳聚糖膜可改善许旺细胞伤口愈合。
再生医学一直在寻找新的天然生物相容性材料,这些材料可能具有生物降解性,但也具有机械顺应性。壳聚糖是一种经美国食品药物管理局(FDA)批准的用于组织工程的前景广阔的生物聚合物,但它在再生设备中的应用因其脆性而受到限制,可以通过与其他材料混合或调整其表面微结构等方法进一步改进。这些膜通过光学显微镜和原子力显微镜(AFM)、热学、机械和降解试验进行了表征,并作为许旺细胞的支架进行了体外测试。甘油混合壳聚糖膜在机械性能方面进行了优化,具有生理级杨氏模量(≈ 0.7 兆帕)。定向拓扑结构能有效引导细胞极化和迁移,尤其是对细胞的集体迁移而言,它是一种性能优异的基底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of synthesis strategies on morphology and antibacterial properties and photocatalytic activity of graphitic carbon nitride (g-C3N4). Injectable nanocomposite hydrogels with co-delivery of oxygen and anticancer drugs for higher cell viability of healthy cells than cancer cells under normoxic and hypoxic conditions. Hybrid near and far field electrospinning of PVDF-TrFE/BaTiO3scaffolds: morphology and osteoblast-like cell responses. Decellularized cartilage tissue bioink formulation for osteochondral graft development. Improvement of cellular pattern organization and clarity through centrifugal force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1