Repair of Mechanical Cartilage Damage Using Exosomes Derived from Deer Antler Stem Cells.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in bioscience (Landmark edition) Pub Date : 2024-08-23 DOI:10.31083/j.fbl2908309
Jue Zhou, Jianwei Zhao, Yimin Wang, Yidi Jiang, Xunsheng Li, Datao Wang, Zhigang Yue, Jinpeng Lv, Hongmei Sun
{"title":"Repair of Mechanical Cartilage Damage Using Exosomes Derived from Deer Antler Stem Cells.","authors":"Jue Zhou, Jianwei Zhao, Yimin Wang, Yidi Jiang, Xunsheng Li, Datao Wang, Zhigang Yue, Jinpeng Lv, Hongmei Sun","doi":"10.31083/j.fbl2908309","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Articular cartilage has limited self-repair capacity, and current clinical treatment options for cartilage defects are inadequate. However, deer antler cartilage possesses unique regenerative properties, with the ability to rapidly repair itself. This rapid self-repair process is closely linked to the paracrine factors released by deer antler stem cells. These findings present potential for the development of cell-free therapies for cartilage defects in clinical settings. The aim of this study was to investigate a novel method for repairing cartilage.</p><p><strong>Methods: </strong>A rat model with articular cartilage defects was established through surgery. Hydrogels loaded with exosomes (Exos) derived from antler stem cells (ASC-Exos) were implanted into the rat cartilage defects. The extent of cartilage damage repair was assessed using histological methods. The effects of ASC-Exos on chondrocytes and rat bone marrow mesenchymal stem cells (BMSCs) were evaluated using cell viability assays, proliferation assays, and scratch assays. Additionally, the maintenance of the chondrocyte phenotype by ASC-Exos was assessed using real-time fluorescence quantitative PCR (qPCR) and western blot analysis. The protein components contained of the Exos were identified using data-independent acquisition (DIA) mass spectrometry.</p><p><strong>Results: </strong>ASC-Exos significantly promoted the repair of cartilage tissue damage. The level of cartilage repair in the experimental group (ASC-Exos) was higher than that in the positive control (human adipose-derived stem cells, hADSC-Exos) and negative control (dulbecco's modified eagle medium) groups (<i>p</i> < 0.05). <i>In vitro</i> experiments demonstrated that ASC-Exos significantly enhanced the proliferation abilities of chondrocytes and the proliferation abilities and the migration abilities of BMSCs (<i>p</i> < 0.05). ASC-Exos up-regulated the expression levels of Aggrecan, Collagen II (COLII), and Sox9 mRNA and proteins in chondrocytes. Analysis of ASC-Exos protein components revealed the presence of active components such as Serotransferrin (TF), S100A4, and Insulin-like growth factor-binding protein 1 (IGF1).</p><p><strong>Conclusions: </strong>ASC-Exos have a significant effect on cartilage damage repair, which may be attributed to their promotion of chondrocyte and BMSCs proliferation and migration, as well as the maintenance of chondrocyte phenotype. This effect may be mediated by the presence of TF, S100A4, and IGF1.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2908309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Articular cartilage has limited self-repair capacity, and current clinical treatment options for cartilage defects are inadequate. However, deer antler cartilage possesses unique regenerative properties, with the ability to rapidly repair itself. This rapid self-repair process is closely linked to the paracrine factors released by deer antler stem cells. These findings present potential for the development of cell-free therapies for cartilage defects in clinical settings. The aim of this study was to investigate a novel method for repairing cartilage.

Methods: A rat model with articular cartilage defects was established through surgery. Hydrogels loaded with exosomes (Exos) derived from antler stem cells (ASC-Exos) were implanted into the rat cartilage defects. The extent of cartilage damage repair was assessed using histological methods. The effects of ASC-Exos on chondrocytes and rat bone marrow mesenchymal stem cells (BMSCs) were evaluated using cell viability assays, proliferation assays, and scratch assays. Additionally, the maintenance of the chondrocyte phenotype by ASC-Exos was assessed using real-time fluorescence quantitative PCR (qPCR) and western blot analysis. The protein components contained of the Exos were identified using data-independent acquisition (DIA) mass spectrometry.

Results: ASC-Exos significantly promoted the repair of cartilage tissue damage. The level of cartilage repair in the experimental group (ASC-Exos) was higher than that in the positive control (human adipose-derived stem cells, hADSC-Exos) and negative control (dulbecco's modified eagle medium) groups (p < 0.05). In vitro experiments demonstrated that ASC-Exos significantly enhanced the proliferation abilities of chondrocytes and the proliferation abilities and the migration abilities of BMSCs (p < 0.05). ASC-Exos up-regulated the expression levels of Aggrecan, Collagen II (COLII), and Sox9 mRNA and proteins in chondrocytes. Analysis of ASC-Exos protein components revealed the presence of active components such as Serotransferrin (TF), S100A4, and Insulin-like growth factor-binding protein 1 (IGF1).

Conclusions: ASC-Exos have a significant effect on cartilage damage repair, which may be attributed to their promotion of chondrocyte and BMSCs proliferation and migration, as well as the maintenance of chondrocyte phenotype. This effect may be mediated by the presence of TF, S100A4, and IGF1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用鹿茸干细胞提取的外泌体修复机械性软骨损伤
背景:关节软骨的自我修复能力有限,目前临床上治疗软骨缺损的方案并不完善。然而,鹿茸软骨具有独特的再生特性,能够快速自我修复。这种快速自我修复过程与鹿茸干细胞释放的旁分泌因子密切相关。这些发现为在临床环境中开发治疗软骨缺陷的无细胞疗法提供了潜力。本研究旨在探讨一种修复软骨的新方法:方法:通过手术建立了关节软骨缺损的大鼠模型。方法:通过手术建立了大鼠关节软骨缺损模型,将含有鹿茸干细胞外泌体(Exos)的水凝胶(ASC-Exos)植入大鼠软骨缺损处。采用组织学方法评估软骨损伤的修复程度。使用细胞活力测定法、增殖测定法和划痕测定法评估了ASC-Exos对软骨细胞和大鼠骨髓间充质干细胞(BMSCs)的影响。此外,还使用实时荧光定量 PCR(qPCR)和 Western 印迹分析评估了 ASC-Exos 对软骨细胞表型的维持作用。利用数据独立获取(DIA)质谱鉴定了Exos所含的蛋白质成分:结果:ASC-Exos能明显促进软骨组织损伤的修复。实验组(ASC-Exos)的软骨修复水平高于阳性对照组(人脂肪来源干细胞,hADSC-Exos)和阴性对照组(杜氏改良鹰培养基)(P < 0.05)。体外实验表明,ASC-Exos能显著增强软骨细胞的增殖能力、BMSCs的增殖能力和迁移能力(p < 0.05)。ASC-Exos能上调软骨细胞中Aggrecan、胶原蛋白II(COLII)和Sox9 mRNA和蛋白质的表达水平。对 ASC-Exos 蛋白成分的分析表明,其中存在血清转铁蛋白(TF)、S100A4 和胰岛素样生长因子结合蛋白 1(IGF1)等活性成分:结论:ASC-Exos 对软骨损伤的修复有显著作用,这可能是由于其促进了软骨细胞和 BMSCs 的增殖和迁移,并维持了软骨细胞的表型。这种作用可能是由 TF、S100A4 和 IGF1 的存在介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
High Glycolytic Activity Signature Reveals CCNB2 as a Key Therapeutic Target in Triple-Negative Breast Cancer. Inhibiting the NF-κB/DRP1 Axis Affords Neuroprotection after Spinal Cord Injury via Inhibiting Polarization of Pro-Inflammatory Microglia. Repair of Mechanical Cartilage Damage Using Exosomes Derived from Deer Antler Stem Cells. Bacterial Insights: Unraveling the Ocular Microbiome in Glaucoma Pathogenesis. Inhibition of Macrophage Recruitment to Heart Valves Mediated by the C-C Chemokine Receptor Type 2 Attenuates Valvular Inflammation Induced by Group A Streptococcus in Lewis Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1