Nonlinear Gradient Field Estimation in Diffusion MRI Tensor Simulation.

Praitayini Kanakaraj, Tianyuan Yao, Nancy R Newlin, Leon Y Cai, Kurt G Schilling, Baxter P Rogers, Adam Anderson, Daniel Moyer, Bennett A Landman
{"title":"Nonlinear Gradient Field Estimation in Diffusion MRI Tensor Simulation.","authors":"Praitayini Kanakaraj, Tianyuan Yao, Nancy R Newlin, Leon Y Cai, Kurt G Schilling, Baxter P Rogers, Adam Anderson, Daniel Moyer, Bennett A Landman","doi":"10.1117/12.3005364","DOIUrl":null,"url":null,"abstract":"<p><p>Gradient nonlinearities not only induce spatial distortion in magnetic resonance imaging (MRI), but also introduce discrepancies between intended and acquired diffusion sensitization in diffusion weighted (DW) MRI. Advances in scanner performance have increased the importance of correcting gradient nonlinearities. The most common approaches for gradient nonlinear field estimations rely on phantom calibration field maps which are not always feasible, especially on retrospective data. Here, we derive a quadratic minimization problem for the complete gradient nonlinear field (L(r)). This approach starts with corrupt diffusion signal and estimates the L(r) in two scenarios: (1) the true diffusion tensor known and (2) the true diffusion tensor unknown (i.e., diffusion tensor is estimated). We show the validity of this mathematical approach, both theoretically and through tensor simulation. The estimated field is assessed through diffusion tensor metrics: mean diffusivity (MD), fractional anisotropy (FA), and principal eigenvector (V1). In simulation with 300 diffusion tensors, the study shows the mathematical model is not ill-posed and remains stable. We find when the true diffusion tensor is known (1) the change in determinant of the estimated L(r) field and the true field is near zero and (2) the median difference in estimated L(r) corrected diffusion metrics to true values is near zero. We find the results of L(r) estimation are dependent on the level of L(r) corruption. This work provides an approach to estimate gradient field without the need for additional calibration scans. <b>To the best of our knowledge, the mathematical derivation presented here is novel.</b></p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12925 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gradient nonlinearities not only induce spatial distortion in magnetic resonance imaging (MRI), but also introduce discrepancies between intended and acquired diffusion sensitization in diffusion weighted (DW) MRI. Advances in scanner performance have increased the importance of correcting gradient nonlinearities. The most common approaches for gradient nonlinear field estimations rely on phantom calibration field maps which are not always feasible, especially on retrospective data. Here, we derive a quadratic minimization problem for the complete gradient nonlinear field (L(r)). This approach starts with corrupt diffusion signal and estimates the L(r) in two scenarios: (1) the true diffusion tensor known and (2) the true diffusion tensor unknown (i.e., diffusion tensor is estimated). We show the validity of this mathematical approach, both theoretically and through tensor simulation. The estimated field is assessed through diffusion tensor metrics: mean diffusivity (MD), fractional anisotropy (FA), and principal eigenvector (V1). In simulation with 300 diffusion tensors, the study shows the mathematical model is not ill-posed and remains stable. We find when the true diffusion tensor is known (1) the change in determinant of the estimated L(r) field and the true field is near zero and (2) the median difference in estimated L(r) corrected diffusion metrics to true values is near zero. We find the results of L(r) estimation are dependent on the level of L(r) corruption. This work provides an approach to estimate gradient field without the need for additional calibration scans. To the best of our knowledge, the mathematical derivation presented here is novel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弥散 MRI 张量模拟中的非线性梯度场估计
梯度非线性不仅会导致磁共振成像(MRI)中的空间失真,还会造成弥散加权(DW)MRI 中预期弥散敏感度与获得弥散敏感度之间的差异。扫描仪性能的提高增加了校正梯度非线性的重要性。梯度非线性场估计的最常见方法依赖于模型校准场图,但这并不总是可行的,尤其是在回顾性数据上。在这里,我们推导出了完整梯度非线性场 (L(r)) 的二次最小化问题。这种方法从损坏的扩散信号开始,在两种情况下估计 L(r):(1) 真实扩散张量已知;(2) 真实扩散张量未知(即扩散张量为估计值)。我们从理论和张量模拟两方面证明了这种数学方法的有效性。估算场通过扩散张量指标进行评估:平均扩散率(MD)、分数各向异性(FA)和主特征向量(V1)。在使用 300 个扩散张量进行模拟时,研究表明该数学模型并不存在问题,而且保持稳定。我们发现,当已知真实的扩散张量时,(1)估计的 L(r) 场和真实场的行列式变化接近于零;(2)估计的 L(r) 校正扩散指标与真实值的中位差接近于零。我们发现 L(r) 估计的结果取决于 L(r) 腐败的程度。这项工作提供了一种无需额外校准扫描即可估计梯度场的方法。据我们所知,这里介绍的数学推导是新颖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Exploring advanced 2D acquisitions in breast tomosynthesis: T-shaped and Pentagon geometries. CDPNet: a radiomic feature learning method with epigenetic application to estimating MGMT promoter methylation status in glioblastoma. Feature Extraction of Ultrasound Radiofrequency Data for the Classification of the Peripheral Zone of Human Prostate. Assessing variability in non-contrast CT for the evaluation of stroke: The effect of CT image reconstruction conditions on AI-based CAD measurements of ASPECTS value and hypodense volume. Investigating Causal Genetic Effects on Overall Survival of Glioblastoma Patients using Normalizing Flow and Structural Causal Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1