Tractography with T1-weighted MRI and associated anatomical constraints on clinical quality diffusion MRI.

Tian Yu, Yunhe Li, Michael E Kim, Chenyu Gao, Qi Yang, Leon Y Cai, Susane M Resnick, Lori L Beason-Held, Daniel C Moyer, Kurt G Schilling, Bennett A Landman
{"title":"Tractography with T1-weighted MRI and associated anatomical constraints on clinical quality diffusion MRI.","authors":"Tian Yu, Yunhe Li, Michael E Kim, Chenyu Gao, Qi Yang, Leon Y Cai, Susane M Resnick, Lori L Beason-Held, Daniel C Moyer, Kurt G Schilling, Bennett A Landman","doi":"10.1117/12.3006286","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. However, recent advances in tractography demonstrated that convolutional recurrent neural networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate streamlines directly from T1 and anatomical context. Training for this network has previously relied on high resolution dMRI. In this paper, we generalize the training mechanism to traditional clinical resolution data, which allows generalizability across sensitive and susceptible study populations. We train CoRNN on a small subset of the Baltimore Longitudinal Study of Aging (BLSA), which better resembles clinical scans. We define a metric, termed the epsilon ball seeding method, to compare T1 tractography and traditional diffusion tractography at the streamline level. We show that under this metric T1 tractography generated by CoRNN reproduces diffusion tractography with approximately three millimeters of error.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12926 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. However, recent advances in tractography demonstrated that convolutional recurrent neural networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate streamlines directly from T1 and anatomical context. Training for this network has previously relied on high resolution dMRI. In this paper, we generalize the training mechanism to traditional clinical resolution data, which allows generalizability across sensitive and susceptible study populations. We train CoRNN on a small subset of the Baltimore Longitudinal Study of Aging (BLSA), which better resembles clinical scans. We define a metric, termed the epsilon ball seeding method, to compare T1 tractography and traditional diffusion tractography at the streamline level. We show that under this metric T1 tractography generated by CoRNN reproduces diffusion tractography with approximately three millimeters of error.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T1 加权核磁共振成像的断层扫描以及临床质量弥散核磁共振成像的相关解剖限制。
弥散核磁共振成像(dMRI)流线束描是活体估算脑白质(WM)通路的黄金标准,长期以来一直被认为是 WM 微观结构的产物。然而,最近在束谱学方面取得的进展表明,采用师生框架训练的卷积递归神经网络(CoRNN)有能力直接从 T1 和解剖背景中学习传播流线。该网络的训练以前一直依赖于高分辨率 dMRI。在本文中,我们将训练机制推广到了传统的临床分辨率数据中,从而实现了敏感和易感研究人群的通用性。我们在巴尔的摩老龄化纵向研究(Baltimore Longitudinal Study of Aging,BLSA)的一个小型子集上训练 CoRNN,该子集更接近临床扫描。我们定义了一种称为ε球播种法的指标,用于在流线水平上比较 T1 tractography 和传统的扩散 tractography。我们的研究表明,在这一指标下,CoRNN 生成的 T1 牵引成像再现了扩散牵引成像,误差约为三毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Automated multi-lesion annotation in chest X-rays: annotating over 450,000 images from public datasets using the AI-based Smart Imagery Framing and Truthing (SIFT) system. High-Fidelity 3D Reconstruction for Accurate Anatomical Measurements in Endoscopic Sinus Surgery. Optimizing parylene and photoconductor thickness in indirect conversion amorphous selenium detectors. Intra- and inter-scanner CT variability and their impact on diagnostic tasks. Quantitative Accuracy of CT Protocols for Cross-sectional and Longitudinal Assessment of COPD: A Virtual Imaging Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1