Marjorie Flahaut , Alexis Laurent , Carla V. Fuenteslópez , Zhanfeng Cui , Hua Ye , Corinne Scaletta , Nathalie Hirt-Burri , Lee Ann Applegate , Viorica Patrulea
{"title":"Reassessing Long-Term Cryopreservation Strategies for Improved Quality, Safety, and Clinical Use of Allogeneic Dermal Progenitor Cells","authors":"Marjorie Flahaut , Alexis Laurent , Carla V. Fuenteslópez , Zhanfeng Cui , Hua Ye , Corinne Scaletta , Nathalie Hirt-Burri , Lee Ann Applegate , Viorica Patrulea","doi":"10.1016/j.jid.2024.06.1285","DOIUrl":null,"url":null,"abstract":"<div><p>In regenerative medicine, ongoing advancements in cell culture techniques, including isolation, expansion, banking, and transport, are crucial for clinical success. Cryopreservation ensures off-the-freezer availability of living cells, enabling long-term storage and transport. Customizing cryopreservation techniques and cryoprotective agents (CPAs) for specific cell types is crucial for cell source quality, sustainability, safety, and therapeutic intervention efficiency. As regenerative medicine progresses, it becomes imperative that the scientific community and industry provide a comprehensive, cell-specific landscape of available and effective cryopreservation techniques, preventing trial-and-error approaches and unlocking the full potential of cell-based therapies. Open-sharing data could lead to safer, more efficient cell therapies and treatments. Two decades of dermal progenitor cell use for burn wound treatment and Good Manufacturing Practice–compliant technology transfers have highlighted the need for further cryopreservation optimization in manufacturing workflows. In this paper, we present experimental data assessing 5 different cryopreservation formulae for long-term storage of clinical-grade FE002 primary progenitor fibroblasts, emphasizing the crucial difference between DMSO-based and DMSO-free CPAs. Our findings suggest that CryoOx, a DMSO-free CPA, is a promising alternative yielding cell viability similar to that of established commercial CPAs. This research highlights the importance of secure, robust, and efficient cryopreservation techniques in cell banking for maximizing quality, ensuring patient safety, and advancing regenerative medicine.</p></div>","PeriodicalId":16311,"journal":{"name":"Journal of Investigative Dermatology","volume":"144 10","pages":"Pages 2125-2135"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022202X24018980/pdfft?md5=767719649077973ef2a295101353718d&pid=1-s2.0-S0022202X24018980-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investigative Dermatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022202X24018980","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In regenerative medicine, ongoing advancements in cell culture techniques, including isolation, expansion, banking, and transport, are crucial for clinical success. Cryopreservation ensures off-the-freezer availability of living cells, enabling long-term storage and transport. Customizing cryopreservation techniques and cryoprotective agents (CPAs) for specific cell types is crucial for cell source quality, sustainability, safety, and therapeutic intervention efficiency. As regenerative medicine progresses, it becomes imperative that the scientific community and industry provide a comprehensive, cell-specific landscape of available and effective cryopreservation techniques, preventing trial-and-error approaches and unlocking the full potential of cell-based therapies. Open-sharing data could lead to safer, more efficient cell therapies and treatments. Two decades of dermal progenitor cell use for burn wound treatment and Good Manufacturing Practice–compliant technology transfers have highlighted the need for further cryopreservation optimization in manufacturing workflows. In this paper, we present experimental data assessing 5 different cryopreservation formulae for long-term storage of clinical-grade FE002 primary progenitor fibroblasts, emphasizing the crucial difference between DMSO-based and DMSO-free CPAs. Our findings suggest that CryoOx, a DMSO-free CPA, is a promising alternative yielding cell viability similar to that of established commercial CPAs. This research highlights the importance of secure, robust, and efficient cryopreservation techniques in cell banking for maximizing quality, ensuring patient safety, and advancing regenerative medicine.
期刊介绍:
Journal of Investigative Dermatology (JID) publishes reports describing original research on all aspects of cutaneous biology and skin disease. Topics include biochemistry, biophysics, carcinogenesis, cell regulation, clinical research, development, embryology, epidemiology and other population-based research, extracellular matrix, genetics, immunology, melanocyte biology, microbiology, molecular and cell biology, pathology, percutaneous absorption, pharmacology, photobiology, physiology, skin structure, and wound healing