Application of Mechanistic Multiparameter Optimization and Large-Scale In Vitro to In Vivo Pharmacokinetics Correlations to Small-Molecule Therapeutic Projects

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-08-12 DOI:10.1021/acs.molpharmaceut.4c0025610.1021/acs.molpharmaceut.4c00256
Fabio Broccatelli*, Vijayabhaskar Veeravalli, Daniel Cashion, Javier L. Baylon, Franco Lombardo and Lei Jia*, 
{"title":"Application of Mechanistic Multiparameter Optimization and Large-Scale In Vitro to In Vivo Pharmacokinetics Correlations to Small-Molecule Therapeutic Projects","authors":"Fabio Broccatelli*,&nbsp;Vijayabhaskar Veeravalli,&nbsp;Daniel Cashion,&nbsp;Javier L. Baylon,&nbsp;Franco Lombardo and Lei Jia*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0025610.1021/acs.molpharmaceut.4c00256","DOIUrl":null,"url":null,"abstract":"<p >Computational chemistry and machine learning are used in drug discovery to predict the target-specific and pharmacokinetic properties of molecules. Multiparameter optimization (MPO) functions are used to summarize multiple properties into a single score, aiding compound prioritization. However, over-reliance on subjective MPO functions risks reinforcing human bias. Mechanistic modeling approaches based on physiological relevance can be adapted to meet different potential key objectives of the project (<i>e.g</i>., minimizing dose, maximizing safety margins, and/or minimizing drug–drug interaction risk) while retaining the same underlying model structure. The current work incorporates recent approaches to predict <i>in vivo</i> pharmacokinetic (PK) properties and validates <i>in vitro</i> to <i>in vivo</i> correlation analysis to support mechanistic PK MPO. Examples of use and impact in small-molecule drug discovery projects are provided. Overall, the mechanistic MPO identifies 83% of the compounds considered as short-listed for clinical experiments in the top second percentile, and 100% in the top 10th percentile, resulting in an area under the receiver operating characteristic curve (AUCROC) &gt; 0.95. In addition, the MPO score successfully recapitulates the chronological progression of the optimization process across different scaffolds. Finally, the MPO scores for compounds characterized in pharmacokinetics experiments are markedly higher compared with the rest of the compounds being synthesized, highlighting the potential of this tool to reduce the reliance on <i>in vivo</i> testing for compound screening.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c00256","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Computational chemistry and machine learning are used in drug discovery to predict the target-specific and pharmacokinetic properties of molecules. Multiparameter optimization (MPO) functions are used to summarize multiple properties into a single score, aiding compound prioritization. However, over-reliance on subjective MPO functions risks reinforcing human bias. Mechanistic modeling approaches based on physiological relevance can be adapted to meet different potential key objectives of the project (e.g., minimizing dose, maximizing safety margins, and/or minimizing drug–drug interaction risk) while retaining the same underlying model structure. The current work incorporates recent approaches to predict in vivo pharmacokinetic (PK) properties and validates in vitro to in vivo correlation analysis to support mechanistic PK MPO. Examples of use and impact in small-molecule drug discovery projects are provided. Overall, the mechanistic MPO identifies 83% of the compounds considered as short-listed for clinical experiments in the top second percentile, and 100% in the top 10th percentile, resulting in an area under the receiver operating characteristic curve (AUCROC) > 0.95. In addition, the MPO score successfully recapitulates the chronological progression of the optimization process across different scaffolds. Finally, the MPO scores for compounds characterized in pharmacokinetics experiments are markedly higher compared with the rest of the compounds being synthesized, highlighting the potential of this tool to reduce the reliance on in vivo testing for compound screening.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将机理多参数优化和大规模体内外药代动力学关联应用于小分子治疗项目
计算化学和机器学习被用于药物发现,以预测分子的靶标特异性和药代动力学特性。多参数优化(MPO)函数用于将多种特性归纳为单一得分,从而帮助确定化合物的优先次序。然而,过度依赖主观 MPO 函数有可能强化人为偏见。基于生理学相关性的机理建模方法可以进行调整,以满足项目的不同潜在关键目标(如剂量最小化、安全系数最大化和/或药物相互作用风险最小化),同时保留相同的基础模型结构。目前的工作结合了预测体内药代动力学(PK)特性的最新方法,并验证了体外到体内的相关性分析,以支持机理PK MPO。报告提供了在小分子药物发现项目中的使用和影响实例。总体而言,机理 MPO 能将 83% 的入围临床实验的化合物识别为前 2 个百分位数,100% 的入围临床实验的化合物识别为前 10 个百分位数,接收者操作特征曲线下面积 (AUCROC) 为 0.95。此外,MPO 分数还成功地再现了不同支架优化过程的时序进展。最后,与其他正在合成的化合物相比,在药代动力学实验中表征的化合物的 MPO 分数明显更高,这凸显了该工具在减少化合物筛选对体内测试的依赖方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1