Matthew J. Meier, Joshua Harrill, Kamin Johnson, Russell S. Thomas, Weida Tong, Julia E. Rager, Carole L. Yauk
{"title":"Progress in toxicogenomics to protect human health","authors":"Matthew J. Meier, Joshua Harrill, Kamin Johnson, Russell S. Thomas, Weida Tong, Julia E. Rager, Carole L. Yauk","doi":"10.1038/s41576-024-00767-1","DOIUrl":null,"url":null,"abstract":"<p>Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose–response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"14 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-024-00767-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose–response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.