Progress in toxicogenomics to protect human health

IF 39.1 1区 生物学 Q1 GENETICS & HEREDITY Nature Reviews Genetics Pub Date : 2024-09-02 DOI:10.1038/s41576-024-00767-1
Matthew J. Meier, Joshua Harrill, Kamin Johnson, Russell S. Thomas, Weida Tong, Julia E. Rager, Carole L. Yauk
{"title":"Progress in toxicogenomics to protect human health","authors":"Matthew J. Meier, Joshua Harrill, Kamin Johnson, Russell S. Thomas, Weida Tong, Julia E. Rager, Carole L. Yauk","doi":"10.1038/s41576-024-00767-1","DOIUrl":null,"url":null,"abstract":"<p>Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose–response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"14 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-024-00767-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose–response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毒物基因组学在保护人类健康方面的进展
毒物基因组学测量分子特征,如转录本、蛋白质、代谢物和表观基因组修饰,以了解和预测环境和药物暴露的毒理效应。由于基因表达谱分析技术的创新,转录组学已成为当代毒理学研究中不可或缺的工具,可提供大规模的机理和定量信息。通过使用转录组生物标志物、网络推断分析、模式匹配方法和人工智能,这些数据可用于预测毒理学危害。此外,新兴的方法,如高通量剂量-反应模型,可以利用毒物基因组数据保护人类健康,即使不能预测具体的危害。最后,单细胞转录组学和多组学提供了对毒理学机制的详细了解。在此,我们回顾了毒物基因组学自诞生以来在将转录组学应用于毒理学测试方面所取得的进展,并重点介绍了正在改变风险评估的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Reviews Genetics
Nature Reviews Genetics 生物-遗传学
CiteScore
57.40
自引率
0.50%
发文量
113
审稿时长
6-12 weeks
期刊介绍: At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish. Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience. As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.
期刊最新文献
Profiling the total transcriptome of single nuclei in archived samples with snRandom-seq Indirect recognition of pathogen virulence proteins to activate plant immune receptors Epigenetic ageing clocks: statistical methods and emerging computational challenges The therapeutic potential of circular RNAs Epigenetics and individuality: from concepts to causality across timescales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1