Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c03102
Shuyi Yu, Tianhui Shi, Chenbiao Li, Chongyu Xie, Fuan Wang, Xiaoqing Liu
{"title":"Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins.","authors":"Shuyi Yu, Tianhui Shi, Chenbiao Li, Chongyu Xie, Fuan Wang, Xiaoqing Liu","doi":"10.1021/acs.nanolett.4c03102","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03102","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 DNA 纳米组合编程为多价溶酶体降解剂,以有效降解致病性膜蛋白。
溶酶体靶向嵌合体(LYTAC)通过靶向降解与疾病相关的膜蛋白或细胞外蛋白,为基于蛋白质的疗法带来了巨大的前景,然而其效率却受到 LYTAC 试剂与指定蛋白质之间有限结合亲和力的限制。在这里,我们建立了一种可编程的多价 LYTAC 系统,将 DNA 串联组装到高亲和力蛋白降解器中,这是一种同时靶向致病膜蛋白和溶酶体靶向受体(胰岛素样生长因子 2 受体,IGF2R)的异二聚体适配体纳米结构,其空间分布或组织模式可调。基于DNA的多价LYTACs在清除肿瘤细胞膜上的免疫检查点蛋白可编程死亡配体1(PD-L1)和血管内皮生长因子受体2(VEGFR2)方面显示出更强的功效,这两种蛋白分别促使T细胞活性显著提高,并对癌细胞生长产生了强有力的抑制作用。这种多价 LYTAC 系统具有高度的可编程性和多功能性,有望实现具有更强活性的蛋白质疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Ultrathin Ga2O3 Photodetector with Fast Response and Trajectory Tracking Capability Fabricated by Liquid Metal Oxidation Band-Edge Mixture Engineered Giant and Switchable Shift Current Generation Quantum Rectification Based on Room Temperature Multidirectional Nonlinearity in Bi2Te3 Surface Coloring and Plasmonic Information Encryption at 50000 dpi Enabled by Direct Femtosecond Laser Printing Ultracompact and Uniform Nanoemitter Array Based on Periodic Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1