Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-03 DOI:10.1002/anie.202413179
Li Yan, Yu Mao, Yingxin Li, Qihao Sha, Kai Sun, Panpan Li, Geoffrey I. N. Waterhouse, Prof. Ziyun Wang, Prof. Shubo Tian, Prof. Xiaoming Sun
{"title":"Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction","authors":"Li Yan,&nbsp;Yu Mao,&nbsp;Yingxin Li,&nbsp;Qihao Sha,&nbsp;Kai Sun,&nbsp;Panpan Li,&nbsp;Geoffrey I. N. Waterhouse,&nbsp;Prof. Ziyun Wang,&nbsp;Prof. Shubo Tian,&nbsp;Prof. Xiaoming Sun","doi":"10.1002/anie.202413179","DOIUrl":null,"url":null,"abstract":"<p>Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe<sub>2</sub>/NC) by utilizing in situ generated Fe<sub>2</sub>Cl<sub>6</sub>(g) dimers from FeCl<sub>3</sub>(s). The structure of Fe<sub>2</sub>/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe<sub>2</sub>/NC, with a Fe−Fe distance of 0.3 nm inherited from Fe<sub>2</sub>Cl<sub>6</sub>, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe<sub>1</sub>/NC), and its counterpart with a common and shorter Fe−Fe distance of ~0.25 nm (Fe<sub>2</sub>/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe−Fe distance in Fe<sub>2</sub>/NC is crucial for the O<sub>2</sub> adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe−Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe−Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe−Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效氧气还原反应的双原子铁催化剂的升华转化合成。
双原子催化剂(DAC)因其显著的催化反应活性而备受关注。然而,在制造双原子催化剂过程中实现原子精确控制仍然是一项重大挑战。在此,我们利用从 FeCl3(s)原位生成的 Fe2Cl6(g)二聚体,开发了一种简单直接的双原子铁催化剂(Fe2/NC)升华转化合成策略。通过像差校正透射电子显微镜和 X 射线吸收精细结构(XAFS)光谱研究了 Fe2/NC 的结构。获得的 Fe2/NC 的铁-铁距离为 0.3 nm,继承自 Fe2Cl6,显示出卓越的氧还原性能,半波电位为 0.90 V(相对于 RHE),超过了商业化的 Pt/C 催化剂、铁单原子催化剂(Fe1/NC)以及铁-铁距离更短的普通催化剂(Fe2/NC-S)(约 0.25 nm)。密度泛函理论(DFT)计算和微动力学分析表明,Fe2/NC 中延长的 Fe-Fe 间距对于催化位点吸附 O2 和促进随后的质子化过程至关重要,从而提高了催化性能。这项工作不仅为制备原子精度的 DAC 引入了一种新方法,而且加深了人们对金属间距对双位点催化效应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
B ← N Lewis Pair Fusion of N,N‐Diaryldihydrophenazines: Effect on Structural, Electronic, and Emissive Properties Mannich‐Type Polymers: A Versatile Platform for Water‐Degradable, Malleable, and Environmentally Responsive Networks Spatially Controlled Co‐Delivery of Diagnostic and Therapeutic Agents Using DNA Nanoframeworks for Pancreatic Cancer Precision Therapy Fluid Chemistry of Metal Halide Perovskites Reactive Hydrogen Species Behaviors on Pd/TiN: In situ SERS Guided Regulation for Chemoselective Hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1