Pouya Ahmadvand, Hossein Farahani, David Farnell, Amirali Darbandsari, James Topham, Joanna Karasinska, Jessica Nelson, Julia Naso, Steven J M Jones, Daniel Renouf, David F Schaeffer, Ali Bashashati
{"title":"A Deep Learning Approach for the Identification of the Molecular Subtypes of Pancreatic Ductal Adenocarcinoma Based on Whole Slide Pathology Images.","authors":"Pouya Ahmadvand, Hossein Farahani, David Farnell, Amirali Darbandsari, James Topham, Joanna Karasinska, Jessica Nelson, Julia Naso, Steven J M Jones, Daniel Renouf, David F Schaeffer, Ali Bashashati","doi":"10.1016/j.ajpath.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed diagnosis and treatment resistance make pancreatic ductal adenocarcinoma (PDAC) mortality rates high. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and tested the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classifying PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.08.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Delayed diagnosis and treatment resistance make pancreatic ductal adenocarcinoma (PDAC) mortality rates high. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and tested the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classifying PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.