The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms.

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-09-03 DOI:10.1007/s10753-024-02139-7
Mohammad Yasin Zamanian, Mozhgan Nazifi, Lusine G Khachatryan, Niloofar Taheri, Mehraveh Sadeghi Ivraghi, Soumya V Menon, Beneen Husseen, K D V Prasad, Iliya Petkov, Nikta Nikbakht
{"title":"The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms.","authors":"Mohammad Yasin Zamanian, Mozhgan Nazifi, Lusine G Khachatryan, Niloofar Taheri, Mehraveh Sadeghi Ivraghi, Soumya V Menon, Beneen Husseen, K D V Prasad, Iliya Petkov, Nikta Nikbakht","doi":"10.1007/s10753-024-02139-7","DOIUrl":null,"url":null,"abstract":"<p><p>Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02139-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿格马丁对帕金森病的神经保护作用:关注氧化应激、炎症和分子机制。
阿格马丁(AGM)是一种天然多胺,由 L-精氨酸衍生而来,由于其具有多方面的生物活性,包括抗氧化、抗炎和抗细胞凋亡作用,已显示出治疗帕金森病(PD)的巨大潜力。本综述探讨了 AGM 在治疗帕金森病方面的治疗潜力,重点关注其神经保护机制和临床前研究证据。在动物模型中,AGM 可通过改善运动功能、减少氧化应激标记物和降低促炎细胞因子水平来减轻鱼藤酮(ROT)的神经毒性作用。此外,AGM 还能防止对多巴胺合成至关重要的 TH + 神经元的丧失。AGM 的神经保护特性归因于它能够调节与帕金森病发病机制有关的几种关键通路,如抑制 NMDA 受体、激活 Nrf2 和抑制 HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB 信号级联。此外,阿马汀在增强神经可塑性要素(如 CREB、BDNF 和 ERK1/2)方面的作用也凸显了其促进神经恢复的潜力。这篇综述强调了γ-巴马汀在帕金森病治疗中的治疗潜力,认为它既能缓解症状,又能保护神经,从而改变病程并改善患者的生活质量。要将这些临床前研究结果转化为临床应用,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Metformin Attenuates Partial Epithelial-Mesenchymal Transition in Salivary Gland Inflammation via PI3K/Akt/GSK3β/Snail Signaling Axis Functional Upregulation of TRPM3 Channels Contributes to Acute Pancreatitis-associated Pain and Inflammation Comparative Analysis of Canonical Inflammasome Activation by Flow Cytometry, Imaging Flow Cytometry and High-Content Imaging The Kynurenine Pathway in Gut Permeability and Inflammation Phosphorylation of Serine 536 of p65(RelA) Downregulates Inflammatory Responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1