{"title":"The role of collagen and crystallinity in the physicochemical properties of naturally derived bone grafts.","authors":"Øystein Øvrebø, Luca Orlando, Kristaps Rubenis, Luca Ciriello, Qianli Ma, Zoe Giorgi, Stefano Tognoni, Dagnija Loca, Tomaso Villa, Liebert P Nogueira, Filippo Rossi, Håvard J Haugen, Giuseppe Perale","doi":"10.1093/rb/rbae093","DOIUrl":null,"url":null,"abstract":"<p><p>Xenografts are commonly used for bone regeneration in dental and orthopaedic domains to repair bone voids and other defects. The first-generation xenografts were made through sintering, which deproteinizes them and alters their crystallinity, while later xenografts are produced using cold-temperature chemical treatments to maintain the structural collagen phase. However, the impact of collagen and the crystalline phase on physicochemical properties have not been elucidated. We hypothesized that understanding these factors could explain why the latter provides improved bone regeneration clinically. In this study, we compared two types of xenografts, one prepared through a low-temperature chemical process (Treated) and another subsequently sintered at 1100°C (Sintered) using advanced microscopy, spectroscopy, X-ray analysis and compressive testing. Our investigation showed that the Treated bone graft was free of residual blood, lipids or cell debris, mitigating the risk of pathogen transmission. Meanwhile, the sintering process removed collagen and the carbonate phase of the Sintered graft, leaving only calcium phosphate and increased mineral crystallinity. Microcomputed tomography revealed that the Treated graft exhibited an increased high porosity (81%) and pore size compared to untreated bone, whereas the Sintered graft exhibited shrinkage, which reduced the porosity (72%), pore size and strut size. Additionally, scanning electron microscopy displayed crack formation around the pores of the Sintered graft. The Treated graft displayed median mechanical properties comparable to native cancellous bone and clinically available solutions, with an apparent modulus of 166 MPa, yield stress of 5.5 MPa and yield strain of 4.9%. In contrast, the Sintered graft exhibited a lower median apparent modulus of 57 MPa. It failed in a brittle manner at a median stress of 1.7 MPa and strain level of 2.9%, demonstrating the structural importance of the collagen phase. This indicates why bone grafts prepared through cold-temperature processes are clinically favourable.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae093","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Xenografts are commonly used for bone regeneration in dental and orthopaedic domains to repair bone voids and other defects. The first-generation xenografts were made through sintering, which deproteinizes them and alters their crystallinity, while later xenografts are produced using cold-temperature chemical treatments to maintain the structural collagen phase. However, the impact of collagen and the crystalline phase on physicochemical properties have not been elucidated. We hypothesized that understanding these factors could explain why the latter provides improved bone regeneration clinically. In this study, we compared two types of xenografts, one prepared through a low-temperature chemical process (Treated) and another subsequently sintered at 1100°C (Sintered) using advanced microscopy, spectroscopy, X-ray analysis and compressive testing. Our investigation showed that the Treated bone graft was free of residual blood, lipids or cell debris, mitigating the risk of pathogen transmission. Meanwhile, the sintering process removed collagen and the carbonate phase of the Sintered graft, leaving only calcium phosphate and increased mineral crystallinity. Microcomputed tomography revealed that the Treated graft exhibited an increased high porosity (81%) and pore size compared to untreated bone, whereas the Sintered graft exhibited shrinkage, which reduced the porosity (72%), pore size and strut size. Additionally, scanning electron microscopy displayed crack formation around the pores of the Sintered graft. The Treated graft displayed median mechanical properties comparable to native cancellous bone and clinically available solutions, with an apparent modulus of 166 MPa, yield stress of 5.5 MPa and yield strain of 4.9%. In contrast, the Sintered graft exhibited a lower median apparent modulus of 57 MPa. It failed in a brittle manner at a median stress of 1.7 MPa and strain level of 2.9%, demonstrating the structural importance of the collagen phase. This indicates why bone grafts prepared through cold-temperature processes are clinically favourable.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.