{"title":"Reviewer Experience Detecting and Judging Human Versus Artificial Intelligence Content: The <i>Stroke</i> Journal Essay Contest.","authors":"Gisele S Silva, Rohan Khera, Lee H Schwamm","doi":"10.1161/STROKEAHA.124.045012","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) large language models (LLMs) now produce human-like general text and images. LLMs' ability to generate persuasive scientific essays that undergo evaluation under traditional peer review has not been systematically studied. To measure perceptions of quality and the nature of authorship, we conducted a competitive essay contest in 2024 with both human and AI participants. Human authors and 4 distinct LLMs generated essays on controversial topics in stroke care and outcomes research. A panel of <i>Stroke</i> Editorial Board members (mostly vascular neurologists), blinded to author identity and with varying levels of AI expertise, rated the essays for quality, persuasiveness, best in topic, and author type. Among 34 submissions (22 human and 12 LLM) scored by 38 reviewers, human and AI essays received mostly similar ratings, though AI essays were rated higher for composition quality. Author type was accurately identified only 50% of the time, with prior LLM experience associated with improved accuracy. In multivariable analyses adjusted for author attributes and essay quality, only persuasiveness was independently associated with odds of a reviewer assigning AI as author type (adjusted odds ratio, 1.53 [95% CI, 1.09-2.16]; <i>P</i>=0.01). In conclusion, a group of experienced editorial board members struggled to distinguish human versus AI authorship, with a bias against best in topic for essays judged to be AI generated. Scientific journals may benefit from educating reviewers on the types and uses of AI in scientific writing and developing thoughtful policies on the appropriate use of AI in authoring manuscripts.</p>","PeriodicalId":21989,"journal":{"name":"Stroke","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroke","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/STROKEAHA.124.045012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) large language models (LLMs) now produce human-like general text and images. LLMs' ability to generate persuasive scientific essays that undergo evaluation under traditional peer review has not been systematically studied. To measure perceptions of quality and the nature of authorship, we conducted a competitive essay contest in 2024 with both human and AI participants. Human authors and 4 distinct LLMs generated essays on controversial topics in stroke care and outcomes research. A panel of Stroke Editorial Board members (mostly vascular neurologists), blinded to author identity and with varying levels of AI expertise, rated the essays for quality, persuasiveness, best in topic, and author type. Among 34 submissions (22 human and 12 LLM) scored by 38 reviewers, human and AI essays received mostly similar ratings, though AI essays were rated higher for composition quality. Author type was accurately identified only 50% of the time, with prior LLM experience associated with improved accuracy. In multivariable analyses adjusted for author attributes and essay quality, only persuasiveness was independently associated with odds of a reviewer assigning AI as author type (adjusted odds ratio, 1.53 [95% CI, 1.09-2.16]; P=0.01). In conclusion, a group of experienced editorial board members struggled to distinguish human versus AI authorship, with a bias against best in topic for essays judged to be AI generated. Scientific journals may benefit from educating reviewers on the types and uses of AI in scientific writing and developing thoughtful policies on the appropriate use of AI in authoring manuscripts.
期刊介绍:
Stroke is a monthly publication that collates reports of clinical and basic investigation of any aspect of the cerebral circulation and its diseases. The publication covers a wide range of disciplines including anesthesiology, critical care medicine, epidemiology, internal medicine, neurology, neuro-ophthalmology, neuropathology, neuropsychology, neurosurgery, nuclear medicine, nursing, radiology, rehabilitation, speech pathology, vascular physiology, and vascular surgery.
The audience of Stroke includes neurologists, basic scientists, cardiologists, vascular surgeons, internists, interventionalists, neurosurgeons, nurses, and physiatrists.
Stroke is indexed in Biological Abstracts, BIOSIS, CAB Abstracts, Chemical Abstracts, CINAHL, Current Contents, Embase, MEDLINE, and Science Citation Index Expanded.