Sulfonamide inhibitors of bacterial carbonic anhydrases.

Q3 Biochemistry, Genetics and Molecular Biology Enzymes Pub Date : 2024-01-01 Epub Date: 2024-07-05 DOI:10.1016/bs.enz.2024.06.006
Alessio Nocentini
{"title":"Sulfonamide inhibitors of bacterial carbonic anhydrases.","authors":"Alessio Nocentini","doi":"10.1016/bs.enz.2024.06.006","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of antibiotic-resistant bacteria necessitates the exploration of novel therapeutic targets. Bacterial carbonic anhydrases (CAs) have been known for decades, but only in the past ten years they have garnered significant interest as drug targets to develop antibiotics having a diverse mechanism of action compared to the clinically used drugs. Significant progress has been made in the field in the past three years, with the validation in vivo of CAs from Neisseria gonorrhoeae, and vancomycin-resistant enterococci as antibiotic targets. This chapter compiles the state-of-the-art research on sulfonamide derivatives described as inhibitors of all known bacterial CAs. A section delves into the mechanisms of action of sulfonamide compounds with the CA classes identified in pathogenic bacteria, specifically α, β, and γ classes. Therefore, the inhibitory profiling of the bacterial CAs with classical and clinically used sulfonamide compounds is reported and analyzed. Another section covers various other series of sulfonamide CA inhibitors studied for the development of new antibiotics. By synthesizing current research findings, this chapter highlights the potential of sulfonamide inhibitors as a novel class of antibacterial agents and paves the way for future drug design strategies.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"55 ","pages":"143-191"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzymes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.enz.2024.06.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of antibiotic-resistant bacteria necessitates the exploration of novel therapeutic targets. Bacterial carbonic anhydrases (CAs) have been known for decades, but only in the past ten years they have garnered significant interest as drug targets to develop antibiotics having a diverse mechanism of action compared to the clinically used drugs. Significant progress has been made in the field in the past three years, with the validation in vivo of CAs from Neisseria gonorrhoeae, and vancomycin-resistant enterococci as antibiotic targets. This chapter compiles the state-of-the-art research on sulfonamide derivatives described as inhibitors of all known bacterial CAs. A section delves into the mechanisms of action of sulfonamide compounds with the CA classes identified in pathogenic bacteria, specifically α, β, and γ classes. Therefore, the inhibitory profiling of the bacterial CAs with classical and clinically used sulfonamide compounds is reported and analyzed. Another section covers various other series of sulfonamide CA inhibitors studied for the development of new antibiotics. By synthesizing current research findings, this chapter highlights the potential of sulfonamide inhibitors as a novel class of antibacterial agents and paves the way for future drug design strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌碳酸酐酶磺酰胺抑制剂。
随着抗生素耐药细菌的日益普遍,有必要探索新的治疗靶点。细菌碳酸酐酶(CAs)为人所知已有数十年,但直到过去十年才引起人们对其作为药物靶点的极大兴趣,从而开发出与临床常用药物相比具有不同作用机制的抗生素。过去三年中,该领域取得了重大进展,淋病奈瑟菌和耐万古霉素肠球菌的 CAs 作为抗生素靶点在体内得到了验证。本章汇编了有关磺酰胺衍生物的最新研究成果,这些衍生物被描述为所有已知细菌 CA 的抑制剂。其中一部分深入探讨了磺酰胺化合物对病原菌中已发现的 CA 类(特别是 α、β 和 γ 类)的作用机制。因此,报告和分析了细菌 CA 与经典和临床常用磺胺化合物的抑制谱。另一部分涉及为开发新抗生素而研究的其他各种磺酰胺 CA 抑制剂系列。通过综合当前的研究成果,本章强调了磺酰胺抑制剂作为一类新型抗菌剂的潜力,并为未来的药物设计策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Enzymes
Enzymes Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
4.30
自引率
0.00%
发文量
10
期刊最新文献
Bacterial α-CAs: a biochemical and structural overview. Bacterial β-carbonic anhydrases. Bacterial γ-carbonic anhydrases. Bacterial ι-CAs. Carbonic anhydrases in bacterial pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1