PET radiomics-based lymphovascular invasion prediction in lung cancer using multiple segmentation and multi-machine learning algorithms.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-09-03 DOI:10.1007/s13246-024-01475-0
Seyyed Ali Hosseini, Ghasem Hajianfar, Pardis Ghaffarian, Milad Seyfi, Elahe Hosseini, Atlas Haddadi Aval, Stijn Servaes, Mauro Hanaoka, Pedro Rosa-Neto, Sanjeev Chawla, Habib Zaidi, Mohammad Reza Ay
{"title":"PET radiomics-based lymphovascular invasion prediction in lung cancer using multiple segmentation and multi-machine learning algorithms.","authors":"Seyyed Ali Hosseini, Ghasem Hajianfar, Pardis Ghaffarian, Milad Seyfi, Elahe Hosseini, Atlas Haddadi Aval, Stijn Servaes, Mauro Hanaoka, Pedro Rosa-Neto, Sanjeev Chawla, Habib Zaidi, Mohammad Reza Ay","doi":"10.1007/s13246-024-01475-0","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering new avenues for personalized treatment strategies and improving patient outcomes. One hundred and twenty-six patients with NSCLC were enrolled in this study. Various automated and semi-automated PET image segmentation methods were applied, including Local Active Contour (LAC), Fuzzy-C-mean (FCM), K-means (KM), Watershed, Region Growing (RG), and Iterative thresholding (IT) with different percentages of the threshold. One hundred five radiomic features were extracted from each region of interest (ROI). Multiple feature selection methods, including Minimum Redundancy Maximum Relevance (MRMR), Recursive Feature Elimination (RFE), and Boruta, and multiple classifiers, including Multilayer Perceptron (MLP), Logistic Regression (LR), XGBoost (XGB), Naive Bayes (NB), and Random Forest (RF), were employed. Synthetic Minority Oversampling Technique (SMOTE) was also used to determine if it boosts the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Our results indicated that the combination of SMOTE, IT (with 45% threshold), RFE feature selection and LR classifier showed the best performance (AUC = 0.93, ACC = 0.84, SEN = 0.85, SPE = 0.84) followed by SMOTE, FCM segmentation, MRMR feature selection, and LR classifier (AUC = 0.92, ACC = 0.87, SEN = 1, SPE = 0.84). The highest ACC belonged to the IT segmentation (with 45 and 50% thresholds) alongside Boruta feature selection and the NB classifier without SMOTE (ACC = 0.9, AUC = 0.78 and 0.76, SEN = 0.7, and SPE = 0.94, respectively). Our results indicate that selection of appropriate segmentation method and machine learning algorithm may be helpful in successful prediction of LVI in patients with NSCLC with high accuracy using PET radiomics analysis.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1613-1625"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01475-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering new avenues for personalized treatment strategies and improving patient outcomes. One hundred and twenty-six patients with NSCLC were enrolled in this study. Various automated and semi-automated PET image segmentation methods were applied, including Local Active Contour (LAC), Fuzzy-C-mean (FCM), K-means (KM), Watershed, Region Growing (RG), and Iterative thresholding (IT) with different percentages of the threshold. One hundred five radiomic features were extracted from each region of interest (ROI). Multiple feature selection methods, including Minimum Redundancy Maximum Relevance (MRMR), Recursive Feature Elimination (RFE), and Boruta, and multiple classifiers, including Multilayer Perceptron (MLP), Logistic Regression (LR), XGBoost (XGB), Naive Bayes (NB), and Random Forest (RF), were employed. Synthetic Minority Oversampling Technique (SMOTE) was also used to determine if it boosts the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Our results indicated that the combination of SMOTE, IT (with 45% threshold), RFE feature selection and LR classifier showed the best performance (AUC = 0.93, ACC = 0.84, SEN = 0.85, SPE = 0.84) followed by SMOTE, FCM segmentation, MRMR feature selection, and LR classifier (AUC = 0.92, ACC = 0.87, SEN = 1, SPE = 0.84). The highest ACC belonged to the IT segmentation (with 45 and 50% thresholds) alongside Boruta feature selection and the NB classifier without SMOTE (ACC = 0.9, AUC = 0.78 and 0.76, SEN = 0.7, and SPE = 0.94, respectively). Our results indicate that selection of appropriate segmentation method and machine learning algorithm may be helpful in successful prediction of LVI in patients with NSCLC with high accuracy using PET radiomics analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多重分割和多机器学习算法,基于 PET 放射线组学预测肺癌淋巴管侵犯。
本研究旨在利用多种机器学习算法和多分段正电子发射断层扫描(PET)放射组学预测非小细胞肺癌(NSCLC)患者的淋巴管侵犯(LVI),为个性化治疗策略和改善患者预后提供新途径。这项研究共招募了126名非小细胞肺癌患者。研究采用了多种自动和半自动 PET 图像分割方法,包括局部主动轮廓(LAC)、模糊均值(FCM)、K 均值(KM)、分水岭、区域生长(RG)和不同阈值百分比的迭代阈值(IT)。从每个感兴趣区(ROI)提取了一百零五个放射学特征。采用了多种特征选择方法,包括最小冗余最大相关性(MRMR)、递归特征消除(RFE)和 Boruta,以及多种分类器,包括多层感知器(MLP)、逻辑回归(LR)、XGBoost(XGB)、奈夫贝叶斯(NB)和随机森林(RF)。我们还使用了合成少数群体过度采样技术(SMOTE),以确定它是否能提高 ROC 曲线下面积(AUC)、准确率(ACC)、灵敏度(SEN)和特异性(SPE)。结果表明,SMOTE、IT(阈值为 45%)、RFE 特征选择和 LR 分类器的组合表现最佳(AUC = 0.93,ACC = 0.84,SEN = 0.85,SPE = 0.84),其次是 SMOTE、FCM 分割、MRMR 特征选择和 LR 分类器(AUC = 0.92,ACC = 0.87,SEN = 1,SPE = 0.84)。ACC最高的是IT分割(阈值分别为45%和50%)以及Boruta特征选择和无SMOTE的NB分类器(ACC=0.9,AUC=0.78和0.76,SEN=0.7,SPE=0.94)。我们的研究结果表明,选择适当的分割方法和机器学习算法可能有助于利用 PET 放射组学分析高精度地成功预测 NSCLC 患者的 LVI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
Autoencoder based data clustering for identifying anomalous repetitive hand movements, and behavioral transition patterns in children. Guidance on selecting and evaluating AI auto-segmentation systems in clinical radiotherapy: insights from a six-vendor analysis. Evaluating the prognostic value of radiomics and clinical features in metastatic prostate cancer using [68Ga]Ga-PSMA-11 PET/CT. In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system. Use of a virtual phantom to assess the capability of a treatment planning system to perform magnetic resonance image distortion correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1