Louis Esperet , Ugo Giocanti , Clément Legrand-Duchesne
{"title":"The structure of quasi-transitive graphs avoiding a minor with applications to the domino problem","authors":"Louis Esperet , Ugo Giocanti , Clément Legrand-Duchesne","doi":"10.1016/j.jctb.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>An infinite graph is quasi-transitive if its vertex set has finitely many orbits under the action of its automorphism group. In this paper we obtain a structure theorem for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally finite quasi-transitive graph <em>G</em> avoiding a minor has a tree-decomposition whose torsos are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under the action of the automorphism group of <em>G</em>. As applications of this result, we prove the following.</p><ul><li><span>•</span><span><p>Every locally finite quasi-transitive graph attains its Hadwiger number, that is, if such a graph contains arbitrarily large clique minors, then it contains an infinite clique minor. This extends a result of Thomassen (1992) <span><span>[38]</span></span> who proved it in the (quasi-)4-connected case and suggested that this assumption could be omitted. In particular, this shows that a Cayley graph excludes a finite minor if and only if it avoids the countable clique as a minor.</p></span></li><li><span>•</span><span><p>Locally finite quasi-transitive graphs avoiding a minor are accessible (in the sense of Thomassen and Woess), which extends known results on planar graphs to any proper minor-closed family.</p></span></li><li><span>•</span><span><p>Minor-excluded finitely generated groups are accessible (in the group-theoretic sense) and finitely presented, which extends classical results on planar groups.</p></span></li><li><span>•</span><span><p>The domino problem is decidable in a minor-excluded finitely generated group if and only if the group is virtually free, which proves the minor-excluded case of a conjecture of Ballier and Stein (2018) <span><span>[7]</span></span>.</p></span></li></ul></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An infinite graph is quasi-transitive if its vertex set has finitely many orbits under the action of its automorphism group. In this paper we obtain a structure theorem for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally finite quasi-transitive graph G avoiding a minor has a tree-decomposition whose torsos are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under the action of the automorphism group of G. As applications of this result, we prove the following.
•
Every locally finite quasi-transitive graph attains its Hadwiger number, that is, if such a graph contains arbitrarily large clique minors, then it contains an infinite clique minor. This extends a result of Thomassen (1992) [38] who proved it in the (quasi-)4-connected case and suggested that this assumption could be omitted. In particular, this shows that a Cayley graph excludes a finite minor if and only if it avoids the countable clique as a minor.
•
Locally finite quasi-transitive graphs avoiding a minor are accessible (in the sense of Thomassen and Woess), which extends known results on planar graphs to any proper minor-closed family.
•
Minor-excluded finitely generated groups are accessible (in the group-theoretic sense) and finitely presented, which extends classical results on planar groups.
•
The domino problem is decidable in a minor-excluded finitely generated group if and only if the group is virtually free, which proves the minor-excluded case of a conjecture of Ballier and Stein (2018) [7].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.