Electrochemical sodium storage properties in monolayer VOPO4: A density functional theory prediction

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2024-08-30 DOI:10.1016/j.chemphys.2024.112442
{"title":"Electrochemical sodium storage properties in monolayer VOPO4: A density functional theory prediction","authors":"","doi":"10.1016/j.chemphys.2024.112442","DOIUrl":null,"url":null,"abstract":"<div><p>The unique structural properties of two-dimensional materials make them promising for energy storage applications. This work theoretically predicts for the first time that Monolayer VOPO<sub>4</sub> (MNL VOPO<sub>4</sub>), exfoliated from the delithiated phase of tetragonal LiVOPO<sub>4</sub>, is stable at room temperature, exhibiting excellent thermodynamic and kinetic stability, thus making it a promising high-capacity anode material for sodium-ion batteries (SIBs). Compared to bulk VOPO<sub>4</sub>, the monolayer structure significantly reduces the sodium ion migration energy barrier from 1.006 to 0.0795 eV, thereby markedly enhancing sodium ion migration kinetics. MNL VOPO<sub>4</sub> can adsorb up to 32 sodium ions, corresponding to a theoretical capacity of 634.88 mA h g<sup>−1</sup> and an energy density of 895.18 Wh kg<sup>−1</sup>. Furthermore, the excellent structural stability of MNL VOPO<sub>4</sub> favors its cycling performance during charge and discharge processes. This work provides theoretical insights for better utilizing and developing multi-atomic phosphate compounds as electrode materials for secondary batteries.</p></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424002714","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The unique structural properties of two-dimensional materials make them promising for energy storage applications. This work theoretically predicts for the first time that Monolayer VOPO4 (MNL VOPO4), exfoliated from the delithiated phase of tetragonal LiVOPO4, is stable at room temperature, exhibiting excellent thermodynamic and kinetic stability, thus making it a promising high-capacity anode material for sodium-ion batteries (SIBs). Compared to bulk VOPO4, the monolayer structure significantly reduces the sodium ion migration energy barrier from 1.006 to 0.0795 eV, thereby markedly enhancing sodium ion migration kinetics. MNL VOPO4 can adsorb up to 32 sodium ions, corresponding to a theoretical capacity of 634.88 mA h g−1 and an energy density of 895.18 Wh kg−1. Furthermore, the excellent structural stability of MNL VOPO4 favors its cycling performance during charge and discharge processes. This work provides theoretical insights for better utilizing and developing multi-atomic phosphate compounds as electrode materials for secondary batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层 VOPO4 的电化学钠储存特性:密度泛函理论预测
二维材料的独特结构特性使其在储能应用中大有可为。这项研究首次从理论上预测了单层 VOPO4(MNL VOPO4)在室温下的稳定性,它是从四方 LiVOPO4 的二锂化相中剥离出来的,表现出优异的热力学和动力学稳定性,从而使其成为钠离子电池(SIB)的一种前景广阔的高容量负极材料。与块状 VOPO4 相比,单层结构大大降低了钠离子迁移能垒,从 1.006 降至 0.0795 eV,从而显著提高了钠离子迁移动力学。MNL VOPO4 最多可吸附 32 个钠离子,理论容量为 634.88 mA h g-1,能量密度为 895.18 Wh kg-1。此外,MNL VOPO4 极佳的结构稳定性有利于其在充放电过程中的循环性能。这项研究为更好地利用和开发多原子磷酸化合物作为二次电池的电极材料提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Enhanced VOCs adsorption on Group VIII transition metal-doped MoS2: A DFT study Choline chloride-Urea based deep eutectic Solvent: Characterization, interfacial behavior and Synergism in binary (surfactant) systems Vertical stacking approach for tailoring electronic and optical properties of ultrathin two-dimensional vdW heterostructures of P-MAB (M=Ti, Zr, Hf; A=S, B=Se) Low-lying resonances in the linear relativistic Jahn-Teller problem G3/2,g×(t2g+eg) in octahedral molecules with a heavy central atom Adsorption of CO2 on mechanochemically synthesized silicon oxycarbide composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1