{"title":"Bike users’ route choice behaviour: Expectations from electric bikes versus reality in Greater Helsinki","authors":"Khashayar Khavarian , Shaghayegh Vosough , Claudio Roncoli","doi":"10.1016/j.jcmr.2024.100045","DOIUrl":null,"url":null,"abstract":"<div><p>Electric pedal-assist bikes (e-bikes) are an emerging technology that aims to enhance cycling by incorporating battery-powered motors activated while pedalling. To promote cycling effectively, it is crucial to understand the factors that influence cyclists’ route choice behaviour. This study investigates individual route choice behaviour among cyclists, taking into account their bike type (i.e., e-bikes and regular bikes). Data collected through a stated preference (SP) survey in Finland is analysed using discrete choice models to compare the differences between e-bike and regular bike users’ route choice behaviour. The study also compares the outputs of multinomial and mixed Logit models for both e-bike and regular bike users to address the impact of error correlation in SP data. Furthermore, by employing a classification approach, the study examines the differences between the expected and actual behavioural changes upon using e-bikes, referred to as the expectation–reality gap, in terms of route choice behaviour. Our research findings highlight certain factors that consistently promote cycling among both regular bike and e-bike users, specifically, low interaction with traffic, fewer intersections, and the presence of separated bike facilities. Also, our findings imply that the SP survey is well-designed to capture the preferences of the individuals. Hence, the observations are not severely correlated, i.e., errors can be assumed to be independently and identically distributed. Furthermore, we show that regular bike and e-bike users with similar characteristics do not share similar beliefs regarding the effects of e-bikes on their cycling habits.</p></div>","PeriodicalId":100771,"journal":{"name":"Journal of Cycling and Micromobility Research","volume":"2 ","pages":"Article 100045"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950105924000366/pdfft?md5=155038bb9bc598004891bf8ee5bd16a7&pid=1-s2.0-S2950105924000366-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cycling and Micromobility Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950105924000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electric pedal-assist bikes (e-bikes) are an emerging technology that aims to enhance cycling by incorporating battery-powered motors activated while pedalling. To promote cycling effectively, it is crucial to understand the factors that influence cyclists’ route choice behaviour. This study investigates individual route choice behaviour among cyclists, taking into account their bike type (i.e., e-bikes and regular bikes). Data collected through a stated preference (SP) survey in Finland is analysed using discrete choice models to compare the differences between e-bike and regular bike users’ route choice behaviour. The study also compares the outputs of multinomial and mixed Logit models for both e-bike and regular bike users to address the impact of error correlation in SP data. Furthermore, by employing a classification approach, the study examines the differences between the expected and actual behavioural changes upon using e-bikes, referred to as the expectation–reality gap, in terms of route choice behaviour. Our research findings highlight certain factors that consistently promote cycling among both regular bike and e-bike users, specifically, low interaction with traffic, fewer intersections, and the presence of separated bike facilities. Also, our findings imply that the SP survey is well-designed to capture the preferences of the individuals. Hence, the observations are not severely correlated, i.e., errors can be assumed to be independently and identically distributed. Furthermore, we show that regular bike and e-bike users with similar characteristics do not share similar beliefs regarding the effects of e-bikes on their cycling habits.