Enhancing the thermal conductivity and viscosity of ethylene glycol-based single-walled carbon nanotube (SWCNT) nanofluid: An investigation utilizing equilibrium molecular dynamics simulation

Shubhankar Sarkar, Papiya Pal, Nanda Kumar Ghosh
{"title":"Enhancing the thermal conductivity and viscosity of ethylene glycol-based single-walled carbon nanotube (SWCNT) nanofluid: An investigation utilizing equilibrium molecular dynamics simulation","authors":"Shubhankar Sarkar,&nbsp;Papiya Pal,&nbsp;Nanda Kumar Ghosh","doi":"10.1016/j.ctta.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, thermal conductivity (TC), viscosity, and rheological properties of an ethylene glycol (EG) based single-walled carbon nanotube (SWCNT) nanofluid (NF) have been computed using equilibrium molecular dynamics (EMD) simulation. In SWCNT, for the interaction between carbon atoms, Tersoff potential is used. Results indicate that TC and viscosity increase in nonlinear fashion with volume fraction. However, with temperature, TC increases but viscosity decreases. Increased interaction between CNT and liquid atoms of EG, and the high heat conductance ability of SWCNT nanoparticles enhance the effective conductivity and viscosity of NFs. Longer CNTs provide more efficient heat transfer pathways and more interactions between CNT &amp; base fluid molecules, which contribute to enhanced TC and viscosity of NFs. Weakening of intermolecular forces within the NF with increasing temperature decreases viscosity. To validate the results, radial distribution function (RDF) and stress autocorrelation function (SACF) have been estimated. Mean square displacement (MSD) investigation demonstrates that the diffusion of liquid atoms (or molecules) serves as the fundamental mechanism for heat conduction in nanofluid. The results have been compared with experimental findings for analogous dispersive medium. Broadly, an attempt has been made to explore how interactions between the base fluid and nanoparticles (NPs) can enhance the thermal and rheological efficiencies of nanofluids.</p></div>","PeriodicalId":9781,"journal":{"name":"Chemical Thermodynamics and Thermal Analysis","volume":"16 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667312624000154/pdfft?md5=105a59bd5ad23a07414de92f0ef49789&pid=1-s2.0-S2667312624000154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Thermodynamics and Thermal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667312624000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, thermal conductivity (TC), viscosity, and rheological properties of an ethylene glycol (EG) based single-walled carbon nanotube (SWCNT) nanofluid (NF) have been computed using equilibrium molecular dynamics (EMD) simulation. In SWCNT, for the interaction between carbon atoms, Tersoff potential is used. Results indicate that TC and viscosity increase in nonlinear fashion with volume fraction. However, with temperature, TC increases but viscosity decreases. Increased interaction between CNT and liquid atoms of EG, and the high heat conductance ability of SWCNT nanoparticles enhance the effective conductivity and viscosity of NFs. Longer CNTs provide more efficient heat transfer pathways and more interactions between CNT & base fluid molecules, which contribute to enhanced TC and viscosity of NFs. Weakening of intermolecular forces within the NF with increasing temperature decreases viscosity. To validate the results, radial distribution function (RDF) and stress autocorrelation function (SACF) have been estimated. Mean square displacement (MSD) investigation demonstrates that the diffusion of liquid atoms (or molecules) serves as the fundamental mechanism for heat conduction in nanofluid. The results have been compared with experimental findings for analogous dispersive medium. Broadly, an attempt has been made to explore how interactions between the base fluid and nanoparticles (NPs) can enhance the thermal and rheological efficiencies of nanofluids.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高乙二醇基单壁碳纳米管(SWCNT)纳米流体的热导率和粘度:利用平衡分子动力学模拟进行研究
在这项研究中,利用平衡分子动力学(EMD)模拟计算了基于乙二醇(EG)的单壁碳纳米管(SWCNT)纳米流体(NF)的导热系数(TC)、粘度和流变特性。在 SWCNT 中,碳原子之间的相互作用采用了 Tersoff 电位。结果表明,TC 和粘度随体积分数以非线性方式增加。然而,随着温度的升高,导电率会增加,但粘度会降低。碳纳米管与 EG 液态原子之间的相互作用增强,以及 SWCNT 纳米粒子的高导热能力提高了无纺布的有效电导率和粘度。更长的碳纳米管提供了更有效的传热途径,碳纳米管与基液分子之间的相互作用也更多,这有助于提高无纺布的导电率和粘度。随着温度的升高,NF 内的分子间作用力减弱,从而降低了粘度。为了验证结果,对径向分布函数(RDF)和应力自相关函数(SACF)进行了估算。平均平方位移(MSD)研究表明,液体原子(或分子)的扩散是纳米流体热传导的基本机制。研究结果与类似分散介质的实验结果进行了比较。从广义上讲,我们试图探索基础流体与纳米粒子(NPs)之间的相互作用如何提高纳米流体的热效率和流变效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Thermodynamic calculation studies on oil composition and water presence effect on the minimum miscibility pressure of the CO2/two-components oil system Modeling the density of chlorinated brines with nonlinear multivariate regressions Refractive indices of binary mixtures of diglycolamine - water at various temperatures Behavior of polyimides based on bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride under thermal treatment Condensation and thermophysical properties of ethylene glycol + water using molecular dynamic simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1