Zhijian Fang , Jing Ba , José M. Carcione , Fansheng Xiong , Li Gao
{"title":"Permeability prediction using logging data from tight reservoirs based on deep neural networks","authors":"Zhijian Fang , Jing Ba , José M. Carcione , Fansheng Xiong , Li Gao","doi":"10.1016/j.jappgeo.2024.105501","DOIUrl":null,"url":null,"abstract":"<div><p>Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine learning (ML) to solve problems in geophysical well logging and related fields has gained much attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm or combination of algorithms that learns from data and makes predictions without being explicitly coded with a deterministic model. The most immediate example is deep neural networks (DNN) that are trained with data to minimize a cost function and make predictions. The tight reservoirs in the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged as the main focus of unconventional oil and gas exploration and development. In this work, we performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and used the remaining two wells for testing. First, we trained the DNN with all collected parameters as inputs, resulting in permeability prediction <em>R</em><sup>2</sup> values of 0.64 and 0.72 for the two wells, indicating a good fit. We then optimized the input parameters by performing a crossplot analysis between these parameters and the permeability. Using the same network structure (with all hyperparameters set the same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed that removing input parameters with poor correlation to permeability improved the prediction accuracy with <em>R</em><sup>2</sup> values of 0.70 and 0.87 for the two wells.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"229 ","pages":"Article 105501"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124002179","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is an important basis for identifying high-quality reservoirs and geological modeling. However, the strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine learning (ML) to solve problems in geophysical well logging and related fields has gained much attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm or combination of algorithms that learns from data and makes predictions without being explicitly coded with a deterministic model. The most immediate example is deep neural networks (DNN) that are trained with data to minimize a cost function and make predictions. The tight reservoirs in the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged as the main focus of unconventional oil and gas exploration and development. In this work, we performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and used the remaining two wells for testing. First, we trained the DNN with all collected parameters as inputs, resulting in permeability prediction R2 values of 0.64 and 0.72 for the two wells, indicating a good fit. We then optimized the input parameters by performing a crossplot analysis between these parameters and the permeability. Using the same network structure (with all hyperparameters set the same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed that removing input parameters with poor correlation to permeability improved the prediction accuracy with R2 values of 0.70 and 0.87 for the two wells.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.