{"title":"Multicolor Electrochemiluminescence of Binary Microcrystals of Iridium and Ruthenium Complexes.","authors":"Chun-Yun Ding, Yu-Wu Zhong","doi":"10.1002/asia.202400987","DOIUrl":null,"url":null,"abstract":"<p><p>We here report the multicolor electrochemiluminescence (ECL) of binary microcrystals prepared from a blue-emissive iridium complex 1 and an orange-emissive ruthenium complex 2. These materials display a plate-like morphology with high crystallinity, as demonstrated by microscopic and powder X-ray diffraction analyses. Under light excitation, these microcrystals exhibit gradient emission color changes as a result of the efficient energy transfer between two complexes. When modified on glass carbon electrodes, these microcrystals exhibit tunable ECLs with varied emission colors including sky-blue, white, orange, and red, depending on the doping ratio of complex 2 and the applied potential. Furthermore, organic amines with different molecular sizes are used as the co-reactant to examine their influences on the ECL efficiency of the porous microcrystals of 1. The analysis on the luminance and RGB values of ECL suggests the existence of energy transfer in the generation of multicolor ECLs in these binary crystals.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400987","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We here report the multicolor electrochemiluminescence (ECL) of binary microcrystals prepared from a blue-emissive iridium complex 1 and an orange-emissive ruthenium complex 2. These materials display a plate-like morphology with high crystallinity, as demonstrated by microscopic and powder X-ray diffraction analyses. Under light excitation, these microcrystals exhibit gradient emission color changes as a result of the efficient energy transfer between two complexes. When modified on glass carbon electrodes, these microcrystals exhibit tunable ECLs with varied emission colors including sky-blue, white, orange, and red, depending on the doping ratio of complex 2 and the applied potential. Furthermore, organic amines with different molecular sizes are used as the co-reactant to examine their influences on the ECL efficiency of the porous microcrystals of 1. The analysis on the luminance and RGB values of ECL suggests the existence of energy transfer in the generation of multicolor ECLs in these binary crystals.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).