Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2024-10-23 Epub Date: 2024-09-04 DOI:10.1128/aem.00819-24
Ana M Calvo, Apoorva Dabholkar, Elizabeth M Wyman, Jessica M Lohmar, Jeffrey W Cary
{"title":"Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis.","authors":"Ana M Calvo, Apoorva Dabholkar, Elizabeth M Wyman, Jessica M Lohmar, Jeffrey W Cary","doi":"10.1128/aem.00819-24","DOIUrl":null,"url":null,"abstract":"<p><p>Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in <i>Aspergillus</i> species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00819-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越形态发生和次生代谢:Velvet 蛋白和 LaeA 在真菌致病过程中的功能。
天鹅绒蛋白以及表观遗传调节因子 LaeA 在许多真菌物种中都是保守的,它们根据环境线索控制着几个关键的细胞过程,包括有性和无性形态发生、次生代谢、对氧化应激的反应以及毒力。在过去的二十年里,人们对它们的作用机制以及功能作用的了解大大增加,尤其是在曲霉菌中。随后,多个研究小组的研究工作导致了其他真菌属(包括重要的机会性植物和动物病原体)中其他天鹅绒和 LaeA 同源物的表征。本综述主要侧重于目前对天鹅绒蛋白和 LaeA 功能在真菌致病过程中作用的了解。天鹅绒蛋白和 LaeA 是真菌所特有的,因此,进一步了解这些关键的调控蛋白对于制定有针对性的控制策略以减少能引起动植物疾病的真菌病原体的有害影响非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Application of sodium hypochlorite for human norovirus and hepatitis A virus inactivation in groundwater. Corynebacterial membrane vesicles disrupt cariogenic interkingdom assemblages. Development of a Limosilactobacillus reuteri therapeutic delivery platform with reduced colonization potential. Elevated incidence of infant botulism in a 17-county area of the Mid-Atlantic region in the United States, 2000-2019, including association with soil types. Microbiome divergence of marine gastropod species separated by the Isthmus of Panama.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1