Gene-Specific Machine Learning Models to Classify Driver Mutations in Clonal Hematopoiesis.

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2024-09-04 DOI:10.1158/2159-8290.CD-24-0751
Christopher M Arends, Siddhartha Jaiswal
{"title":"Gene-Specific Machine Learning Models to Classify Driver Mutations in Clonal Hematopoiesis.","authors":"Christopher M Arends, Siddhartha Jaiswal","doi":"10.1158/2159-8290.CD-24-0751","DOIUrl":null,"url":null,"abstract":"<p><p>There is no general consensus on the set of mutations capable of driving the age-related clonal expansions in hematopoietic stem cells known as clonal hematopoiesis, and current variant classifications typically rely on rules derived from expert knowledge. In this issue of Cancer Discovery, Damajo and colleagues trained and validated machine learning models without prior knowledge of clonal hematopoiesis driver mutations to classify somatic mutations in blood for 12 genes in a purely data-driven way. See related article by Demajo et al., p. 1717 (9).</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":"14 9","pages":"1581-1583"},"PeriodicalIF":29.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-0751","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There is no general consensus on the set of mutations capable of driving the age-related clonal expansions in hematopoietic stem cells known as clonal hematopoiesis, and current variant classifications typically rely on rules derived from expert knowledge. In this issue of Cancer Discovery, Damajo and colleagues trained and validated machine learning models without prior knowledge of clonal hematopoiesis driver mutations to classify somatic mutations in blood for 12 genes in a purely data-driven way. See related article by Demajo et al., p. 1717 (9).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因特异性机器学习模型对克隆性造血中的驱动突变进行分类
对于能够驱动被称为克隆性造血的造血干细胞中与年龄相关的克隆扩增的突变集,目前还没有达成普遍共识,目前的变异分类通常依赖于从专家知识中得出的规则。在本期的《癌症发现》(Cancer Discovery)杂志上,Damajo及其同事训练并验证了机器学习模型,无需事先了解克隆性造血驱动突变的知识,就能以纯数据驱动的方式对血液中12个基因的体细胞突变进行分类。请参见 Demajo 等人的相关文章,第 1717 页(9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
NOTCH1 drives sexually dimorphic immune responses in hepatocellular carcinoma. PKN2 is a dependency of the mesenchymal-like cancer cell state. The UBA1-STUB1 axis mediates cancer immune escape and resistance to checkpoint blockade Survivin promotes stem cell competence for skin cancer initiation Sympathetic Neurons Promote Small Cell Lung Cancer Through the Beta-2 Adrenergic Receptor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1