{"title":"Nerolidol- Potential Therapeutic Agent for Various Neurological Disorders via its Antioxidative Property.","authors":"Vibhav Varshney, Prachi Varshney, Abhishek Kumar, Ahsas Goyal, Debapriya Garabadu","doi":"10.2174/0113892010307891240819064720","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disorders are devastating conditions affecting both cognitive and motorrelated functions in aged people. Yet there is no proper medication to treat these illnesses, and the currently available medications can only provide symptomatic relief to the patients. All neurological disorders share the same etiology, such as oxidative stress, mitochondrial dysfunction, neurochemical deficiency, neuronal loss, apoptosis, endoplasmic reticulum stress, neuroinflammation, and disease-related protein aggregation. Nowadays, researchers use antioxidant-based strategies to prevent or halt the disease progression. Nerolidol, a strong antioxidant, possesses various biological activities and properties that treat cardiotoxicity, nephrotoxicity, neurotoxicity, and many other diseases. Many recent publications and research studies highlight the beneficial effect of nerolidol on brain disorders. In Alzheimer's disease, nerolidol shows neuroprotection by decreasing amyloid plaque formation, lipid peroxidation, cholinergic neuronal loss, locomotor dysfunction, neuroinflammation, and hippocampal damage via enhancing antioxidant expression. Also, it shows neuroprotection against rotenone-induced neurotoxicity by inhibiting microglial activation. Another study reported that nerolidol shows antiepileptic effects in animal models by suppressing kindling-induced memory impairment by decreasing oxidative stress. It has been found that NRL administration increases the antioxidant levels, decreasing the proinflammatory cytokine release as well as decreasing the apoptotic protein and cerebral infarct size. In conclusion, nerolidol tends to reverse the harmful effects of disease-related factors, including OS, neuroinflammation, protein aggregation, and apoptosis, making nerolidol a choiceable drug for the management of neurological disorders. The purpose of this review is to discuss the mechanism of nerolidol in treating various neurological disorders.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010307891240819064720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurological disorders are devastating conditions affecting both cognitive and motorrelated functions in aged people. Yet there is no proper medication to treat these illnesses, and the currently available medications can only provide symptomatic relief to the patients. All neurological disorders share the same etiology, such as oxidative stress, mitochondrial dysfunction, neurochemical deficiency, neuronal loss, apoptosis, endoplasmic reticulum stress, neuroinflammation, and disease-related protein aggregation. Nowadays, researchers use antioxidant-based strategies to prevent or halt the disease progression. Nerolidol, a strong antioxidant, possesses various biological activities and properties that treat cardiotoxicity, nephrotoxicity, neurotoxicity, and many other diseases. Many recent publications and research studies highlight the beneficial effect of nerolidol on brain disorders. In Alzheimer's disease, nerolidol shows neuroprotection by decreasing amyloid plaque formation, lipid peroxidation, cholinergic neuronal loss, locomotor dysfunction, neuroinflammation, and hippocampal damage via enhancing antioxidant expression. Also, it shows neuroprotection against rotenone-induced neurotoxicity by inhibiting microglial activation. Another study reported that nerolidol shows antiepileptic effects in animal models by suppressing kindling-induced memory impairment by decreasing oxidative stress. It has been found that NRL administration increases the antioxidant levels, decreasing the proinflammatory cytokine release as well as decreasing the apoptotic protein and cerebral infarct size. In conclusion, nerolidol tends to reverse the harmful effects of disease-related factors, including OS, neuroinflammation, protein aggregation, and apoptosis, making nerolidol a choiceable drug for the management of neurological disorders. The purpose of this review is to discuss the mechanism of nerolidol in treating various neurological disorders.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.