Abnormal multimodal neuroimaging patterns associated with social deficits in male autism spectrum disorder

IF 3.5 2区 医学 Q1 NEUROIMAGING Human Brain Mapping Pub Date : 2024-09-04 DOI:10.1002/hbm.70017
Long Wei, Xin Xu, Yuwei Su, Min Lan, Sifeng Wang, Suyu Zhong
{"title":"Abnormal multimodal neuroimaging patterns associated with social deficits in male autism spectrum disorder","authors":"Long Wei,&nbsp;Xin Xu,&nbsp;Yuwei Su,&nbsp;Min Lan,&nbsp;Sifeng Wang,&nbsp;Suyu Zhong","doi":"10.1002/hbm.70017","DOIUrl":null,"url":null,"abstract":"<p>Atypical social impairments (i.e., impaired social cognition and social communication) are vital manifestations of autism spectrum disorder (ASD) patients, and the incidence rate of ASD is significantly higher in males than in females. Characterizing the atypical brain patterns underlying social deficits of ASD is significant for understanding the pathogenesis. However, there are no robust imaging biomarkers that are specific to ASD, which may be due to neurobiological complexity and limitations of single-modality research. To describe the multimodal brain patterns related to social deficits in ASD, we highlighted the potential functional role of white matter (WM) and incorporated WM functional activity and gray matter structure into multimodal fusion. Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuations of WM (WM-fALFF) were combined by fusion analysis model adopting the social behavior. Our results revealed multimodal spatial patterns associated with Social Responsiveness Scale multiple scores in ASD. Specifically, GMV exhibited a consistent brain pattern, in which salience network and limbic system were commonly identified associated with all multiple social impairments. More divergent brain patterns in WM-fALFF were explored, suggesting that WM functional activity is more sensitive to ASD's complex social impairments. Moreover, brain regions related to social impairment may be potentially interconnected across modalities. Cross-site validation established the repeatability of our results. Our research findings contribute to understanding the neural mechanisms underlying social disorders in ASD and affirm the feasibility of identifying biomarkers from functional activity in WM.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Atypical social impairments (i.e., impaired social cognition and social communication) are vital manifestations of autism spectrum disorder (ASD) patients, and the incidence rate of ASD is significantly higher in males than in females. Characterizing the atypical brain patterns underlying social deficits of ASD is significant for understanding the pathogenesis. However, there are no robust imaging biomarkers that are specific to ASD, which may be due to neurobiological complexity and limitations of single-modality research. To describe the multimodal brain patterns related to social deficits in ASD, we highlighted the potential functional role of white matter (WM) and incorporated WM functional activity and gray matter structure into multimodal fusion. Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuations of WM (WM-fALFF) were combined by fusion analysis model adopting the social behavior. Our results revealed multimodal spatial patterns associated with Social Responsiveness Scale multiple scores in ASD. Specifically, GMV exhibited a consistent brain pattern, in which salience network and limbic system were commonly identified associated with all multiple social impairments. More divergent brain patterns in WM-fALFF were explored, suggesting that WM functional activity is more sensitive to ASD's complex social impairments. Moreover, brain regions related to social impairment may be potentially interconnected across modalities. Cross-site validation established the repeatability of our results. Our research findings contribute to understanding the neural mechanisms underlying social disorders in ASD and affirm the feasibility of identifying biomarkers from functional activity in WM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与男性自闭症谱系障碍社交障碍相关的异常多模态神经影像模式。
非典型社交障碍(即社交认知和社交沟通受损)是自闭症谱系障碍(ASD)患者的重要表现,男性的发病率明显高于女性。描述自闭症谱系障碍社交障碍背后的非典型大脑模式对于了解其发病机制意义重大。然而,由于神经生物学的复杂性和单模态研究的局限性,目前还没有针对 ASD 的可靠的成像生物标志物。为了描述与 ASD 社交障碍相关的多模态大脑模式,我们强调了白质(WM)的潜在功能作用,并将白质功能活动和灰质结构纳入多模态融合。灰质体积(GMV)和WM低频波动分数振幅(WM-fALFF)通过融合分析模型与社交行为相结合。我们的研究结果表明,多模态空间模式与 ASD 患者的社会反应量表(Social Responsiveness Scale)多项评分相关。具体来说,GMV表现出一致的大脑模式,其中显著性网络和边缘系统被普遍认定与所有多重社交障碍相关。在WM-fALFF中,研究人员发现了更多不同的大脑模式,这表明WM功能活动对ASD复杂的社交障碍更为敏感。此外,与社交障碍相关的脑区可能在各种模式中相互关联。跨研究地点验证证实了我们研究结果的可重复性。我们的研究成果有助于理解ASD社交障碍的神经机制,并肯定了从WM功能活动中识别生物标记物的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
期刊最新文献
Alterations of Excitation–Inhibition Balance and Brain Network Dynamics Support Sensory Deprivation Theory in Presbycusis Characterization and Mitigation of a Simultaneous Multi-Slice fMRI Artifact: Multiband Artifact Regression in Simultaneous Slices Frontoparietal Structural Network Disconnections Correlate With Outcome After a Severe Stroke Olfactory Dysfunction and Limbic Hypoactivation in Temporal Lobe Epilepsy Pain-Discriminating Information Decoded From Spatiotemporal Patterns of Hemodynamic Responses Measured by fMRI in the Human Brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1