Madison Bailey, Zlatomira G Ilchovska, Akram A Hosseini, JeYoung Jung
{"title":"Impact of Apolipoprotein E ε4 in Alzheimer's Disease: A Meta-Analysis of Voxel-Based Morphometry Studies.","authors":"Madison Bailey, Zlatomira G Ilchovska, Akram A Hosseini, JeYoung Jung","doi":"10.3988/jcn.2024.0176","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Alzheimer's disease (AD) is the most-prevalent form of dementia and imposes substantial burdens at the personal and societal levels. The apolipoprotein E (APOE) ε4 allele is a genetic factor known to increase AD risk and exacerbate brain atrophy and its symptoms. We aimed to provide a comprehensive review of the impacts of APOE ε4 on brain atrophy in AD as well as in mild cognitive impairment (MCI) as a transitional stage of AD.</p><p><strong>Methods: </strong>We performed a coordinate-based meta-analysis of voxel-based morphometry studies to compare gray-matter atrophy patterns between carriers and noncarriers of APOE ε4. We obtained coordinate-based structural magnetic resonance imaging data from 1,135 individuals who met our inclusion criteria among 12 studies reported in PubMed and Google Scholar.</p><p><strong>Results: </strong>We found that atrophy of the hippocampus and parahippocampus was significantly greater in APOE ε4 carriers than in noncarriers, especially among those with AD and MCI, while there was no significant atrophy in these regions in healthy controls who were also carriers.</p><p><strong>Conclusions: </strong>The present meta-analysis has highlighted the significant link between the APOE ε4 allele and hippocampal atrophy in both AD and MCI, which emphasizes the critical influence of the allele on neurodegeneration, especially in the hippocampus. These findings improve the understanding of AD pathology, potentially facilitating progress in early detection, targeted interventions, and personalized care strategies for individuals at risk of AD who carry the APOE ε4 allele.</p>","PeriodicalId":15432,"journal":{"name":"Journal of Clinical Neurology","volume":"20 5","pages":"469-477"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3988/jcn.2024.0176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Alzheimer's disease (AD) is the most-prevalent form of dementia and imposes substantial burdens at the personal and societal levels. The apolipoprotein E (APOE) ε4 allele is a genetic factor known to increase AD risk and exacerbate brain atrophy and its symptoms. We aimed to provide a comprehensive review of the impacts of APOE ε4 on brain atrophy in AD as well as in mild cognitive impairment (MCI) as a transitional stage of AD.
Methods: We performed a coordinate-based meta-analysis of voxel-based morphometry studies to compare gray-matter atrophy patterns between carriers and noncarriers of APOE ε4. We obtained coordinate-based structural magnetic resonance imaging data from 1,135 individuals who met our inclusion criteria among 12 studies reported in PubMed and Google Scholar.
Results: We found that atrophy of the hippocampus and parahippocampus was significantly greater in APOE ε4 carriers than in noncarriers, especially among those with AD and MCI, while there was no significant atrophy in these regions in healthy controls who were also carriers.
Conclusions: The present meta-analysis has highlighted the significant link between the APOE ε4 allele and hippocampal atrophy in both AD and MCI, which emphasizes the critical influence of the allele on neurodegeneration, especially in the hippocampus. These findings improve the understanding of AD pathology, potentially facilitating progress in early detection, targeted interventions, and personalized care strategies for individuals at risk of AD who carry the APOE ε4 allele.
期刊介绍:
The JCN aims to publish the cutting-edge research from around the world. The JCN covers clinical and translational research for physicians and researchers in the field of neurology. Encompassing the entire neurological diseases, our main focus is on the common disorders including stroke, epilepsy, Parkinson''s disease, dementia, multiple sclerosis, headache, and peripheral neuropathy. Any authors affiliated with an accredited biomedical institution may submit manuscripts of original articles, review articles, and letters to the editor. The JCN will allow clinical neurologists to enrich their knowledge of patient management, education, and clinical or experimental research, and hence their professionalism.