HMM for discovering decision-making dynamics using reinforcement learning experiments.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-09-03 DOI:10.1093/biostatistics/kxae033
Xingche Guo, Donglin Zeng, Yuanjia Wang
{"title":"HMM for discovering decision-making dynamics using reinforcement learning experiments.","authors":"Xingche Guo, Donglin Zeng, Yuanjia Wang","doi":"10.1093/biostatistics/kxae033","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强化学习实验发现决策动态的 HMM。
重度抑郁障碍(MDD)是导致残疾生活年数的主要原因,由于其复杂性和异质性,给诊断和治疗带来了挑战。新出现的证据表明,奖赏处理异常可作为重度抑郁症的行为标记。为了测量奖赏加工,患者要完成基于计算机的行为任务,其中涉及做出选择或对兴奋剂做出反应,而这些选择或反应与不同的结果有关,例如在实验室中的收益或损失。对强化学习(RL)模型进行拟合,以提取衡量奖赏处理各方面(如奖赏敏感性)的参数,从而描述患者在行为任务中如何做出决策。最近的研究结果表明,仅根据单一的 RL 模型来描述奖赏学习是不够的;相反,决策过程可能会在多种策略之间切换。一个重要的科学问题是,决策策略的动态变化如何影响 MDD 患者的奖赏学习能力。受 "建立临床护理中抗抑郁剂反应的调节因子和生物特征"(EMBARC)研究中的概率奖励任务的启发,我们提出了一种新的 RL-HMM(隐马尔可夫模型)框架,用于分析基于奖励的决策。我们的模型允许在 HMM 下的两种不同方法之间切换决策策略:受试者根据 RL 模型做出决策或选择随机选择。我们考虑了连续的 RL 状态空间,并允许 HMM 中的过渡概率随时间变化。我们引入了一种计算高效的期望最大化(EM)算法来进行参数估计,并使用非参数自举法进行推断。广泛的模拟研究验证了我们方法的有限样本性能。我们将我们的方法应用于 EMBARC 研究,结果表明与健康对照组相比,MDD 患者在 RL 中的参与度较低,而参与度与情绪冲突任务中负面情绪回路的大脑活动有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
Recoverability of causal effects under presence of missing data: a longitudinal case study. Fast standard error estimation for joint models of longitudinal and time-to-event data based on stochastic EM algorithms. The impact of coarsening an exposure on partial identifiability in instrumental variable settings. Selection processes, transportability, and failure time analysis in life history studies. Functional quantile principal component analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1