Evaluating the Capabilities of Generative AI Tools in Understanding Medical Papers: Qualitative Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2024-09-04 DOI:10.2196/59258
Seyma Handan Akyon, Fatih Cagatay Akyon, Ahmet Sefa Camyar, Fatih Hızlı, Talha Sari, Şamil Hızlı
{"title":"Evaluating the Capabilities of Generative AI Tools in Understanding Medical Papers: Qualitative Study.","authors":"Seyma Handan Akyon, Fatih Cagatay Akyon, Ahmet Sefa Camyar, Fatih Hızlı, Talha Sari, Şamil Hızlı","doi":"10.2196/59258","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reading medical papers is a challenging and time-consuming task for doctors, especially when the papers are long and complex. A tool that can help doctors efficiently process and understand medical papers is needed.</p><p><strong>Objective: </strong>This study aims to critically assess and compare the comprehension capabilities of large language models (LLMs) in accurately and efficiently understanding medical research papers using the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklist, which provides a standardized framework for evaluating key elements of observational study.</p><p><strong>Methods: </strong>The study is a methodological type of research. The study aims to evaluate the understanding capabilities of new generative artificial intelligence tools in medical papers. A novel benchmark pipeline processed 50 medical research papers from PubMed, comparing the answers of 6 LLMs (GPT-3.5-Turbo, GPT-4-0613, GPT-4-1106, PaLM 2, Claude v1, and Gemini Pro) to the benchmark established by expert medical professors. Fifteen questions, derived from the STROBE checklist, assessed LLMs' understanding of different sections of a research paper.</p><p><strong>Results: </strong>LLMs exhibited varying performance, with GPT-3.5-Turbo achieving the highest percentage of correct answers (n=3916, 66.9%), followed by GPT-4-1106 (n=3837, 65.6%), PaLM 2 (n=3632, 62.1%), Claude v1 (n=2887, 58.3%), Gemini Pro (n=2878, 49.2%), and GPT-4-0613 (n=2580, 44.1%). Statistical analysis revealed statistically significant differences between LLMs (P<.001), with older models showing inconsistent performance compared to newer versions. LLMs showcased distinct performances for each question across different parts of a scholarly paper-with certain models like PaLM 2 and GPT-3.5 showing remarkable versatility and depth in understanding.</p><p><strong>Conclusions: </strong>This study is the first to evaluate the performance of different LLMs in understanding medical papers using the retrieval augmented generation method. The findings highlight the potential of LLMs to enhance medical research by improving efficiency and facilitating evidence-based decision-making. Further research is needed to address limitations such as the influence of question formats, potential biases, and the rapid evolution of LLM models.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e59258"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/59258","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Reading medical papers is a challenging and time-consuming task for doctors, especially when the papers are long and complex. A tool that can help doctors efficiently process and understand medical papers is needed.

Objective: This study aims to critically assess and compare the comprehension capabilities of large language models (LLMs) in accurately and efficiently understanding medical research papers using the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklist, which provides a standardized framework for evaluating key elements of observational study.

Methods: The study is a methodological type of research. The study aims to evaluate the understanding capabilities of new generative artificial intelligence tools in medical papers. A novel benchmark pipeline processed 50 medical research papers from PubMed, comparing the answers of 6 LLMs (GPT-3.5-Turbo, GPT-4-0613, GPT-4-1106, PaLM 2, Claude v1, and Gemini Pro) to the benchmark established by expert medical professors. Fifteen questions, derived from the STROBE checklist, assessed LLMs' understanding of different sections of a research paper.

Results: LLMs exhibited varying performance, with GPT-3.5-Turbo achieving the highest percentage of correct answers (n=3916, 66.9%), followed by GPT-4-1106 (n=3837, 65.6%), PaLM 2 (n=3632, 62.1%), Claude v1 (n=2887, 58.3%), Gemini Pro (n=2878, 49.2%), and GPT-4-0613 (n=2580, 44.1%). Statistical analysis revealed statistically significant differences between LLMs (P<.001), with older models showing inconsistent performance compared to newer versions. LLMs showcased distinct performances for each question across different parts of a scholarly paper-with certain models like PaLM 2 and GPT-3.5 showing remarkable versatility and depth in understanding.

Conclusions: This study is the first to evaluate the performance of different LLMs in understanding medical papers using the retrieval augmented generation method. The findings highlight the potential of LLMs to enhance medical research by improving efficiency and facilitating evidence-based decision-making. Further research is needed to address limitations such as the influence of question formats, potential biases, and the rapid evolution of LLM models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估生成式人工智能工具在理解医学论文方面的能力:定性研究。
背景:阅读医学论文对医生来说是一项具有挑战性且耗时的任务,尤其是当论文篇幅较长、内容复杂时。我们需要一种能帮助医生高效处理和理解医学论文的工具:本研究旨在使用 STROBE(加强流行病学中观察性研究的报告)核对表,批判性地评估和比较大型语言模型(LLM)在准确、高效地理解医学研究论文方面的理解能力:本研究属于方法论研究。研究旨在评估新的生成式人工智能工具对医学论文的理解能力。一种新型基准管道处理了来自 PubMed 的 50 篇医学研究论文,将 6 种 LLM(GPT-3.5-Turbo、GPT-4-0613、GPT-4-1106、PaLM 2、Claude v1 和 Gemini Pro)的答案与医学专家教授设定的基准进行了比较。从 STROBE 检查表中提取的 15 个问题评估了法学硕士对研究论文不同部分的理解:法学硕士的表现各不相同,GPT-3.5-Turbo的正确率最高(n=3916,66.9%),其次是GPT-4-1106(n=3837,65.6%)、PaLM 2(n=3632,62.1%)、Claude v1(n=2887,58.3%)、Gemini Pro(n=2878,49.2%)和GPT-4-0613(n=2580,44.1%)。统计分析显示,不同 LLM 之间存在显著的统计学差异(PConclusions:本研究首次使用检索增强生成法评估了不同 LLM 在理解医学论文方面的性能。研究结果凸显了 LLM 通过提高效率和促进循证决策来加强医学研究的潜力。还需要进一步的研究来解决一些局限性问题,如问题格式的影响、潜在的偏见以及 LLM 模型的快速演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Factors Contributing to Successful Information System Implementation and Employee Well-Being in Health Care and Social Welfare Professionals: Comparative Cross-Sectional Study. Bidirectional Long Short-Term Memory-Based Detection of Adverse Drug Reaction Posts Using Korean Social Networking Services Data: Deep Learning Approaches. Correlation between Diagnosis-related Group Weights and Nursing Time in the Cardiology Department: A Cross-sectional Study. Data Ownership in the AI-Powered Integrative Health Care Landscape. Medication Prescription Policy for US Veterans With Metastatic Castration-Resistant Prostate Cancer: Causal Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1