{"title":"Biosynthesis of Diverse Ephedra-Type Alkaloids via a Newly Identified Enzymatic Cascade.","authors":"Peiling Wu, Ding Luo, Yuezhou Wang, Xiaoxu Shang, Binju Wang, Xianming Deng, Jifeng Yuan","doi":"10.34133/bdr.0048","DOIUrl":null,"url":null,"abstract":"<p><p>Ephedra-type alkaloids represent a large class of natural and synthetic phenylpropanolamine molecules with great pharmaceutical values. However, the existing methods typically rely on chemical approaches to diversify the <i>N</i>-group modification of Ephedra-type alkaloids. Herein, we report a 2-step enzymatic assembly line for creating structurally diverse Ephedra-type alkaloids to replace the conventional chemical modification steps. We first identified a new carboligase from <i>Bacillus subtilis</i> (<i>Bs</i>AlsS, acetolactate synthase) as a robust catalyst to yield different phenylacetylcarbinol (PAC) analogs from diverse aromatic aldehydes with near 100% conversions. Subsequently, we screened imine reductases (IREDs) for the reductive amination of PAC analogs. It was found that IRG02 from <i>Streptomyces albidoflavus</i> had good activities with conversions ranging from 37% to 84% for the reductive alkylamination with diverse amine partners such as allylamine, propargylamine, and cyclopropylamine. Overall, 3 new bio-modifications at the <i>N</i>-group of Ephedra-type alkaloids were established. Taken together, our work lays a foundation for the future implementation of biocatalysis for synthesizing structurally diverse Ephedra-type alkaloids with potential new pharmaceutical applications.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"6 ","pages":"0048"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Ephedra-type alkaloids represent a large class of natural and synthetic phenylpropanolamine molecules with great pharmaceutical values. However, the existing methods typically rely on chemical approaches to diversify the N-group modification of Ephedra-type alkaloids. Herein, we report a 2-step enzymatic assembly line for creating structurally diverse Ephedra-type alkaloids to replace the conventional chemical modification steps. We first identified a new carboligase from Bacillus subtilis (BsAlsS, acetolactate synthase) as a robust catalyst to yield different phenylacetylcarbinol (PAC) analogs from diverse aromatic aldehydes with near 100% conversions. Subsequently, we screened imine reductases (IREDs) for the reductive amination of PAC analogs. It was found that IRG02 from Streptomyces albidoflavus had good activities with conversions ranging from 37% to 84% for the reductive alkylamination with diverse amine partners such as allylamine, propargylamine, and cyclopropylamine. Overall, 3 new bio-modifications at the N-group of Ephedra-type alkaloids were established. Taken together, our work lays a foundation for the future implementation of biocatalysis for synthesizing structurally diverse Ephedra-type alkaloids with potential new pharmaceutical applications.