Biosynthesis of Diverse Ephedra-Type Alkaloids via a Newly Identified Enzymatic Cascade.

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2024-09-03 eCollection Date: 2024-01-01 DOI:10.34133/bdr.0048
Peiling Wu, Ding Luo, Yuezhou Wang, Xiaoxu Shang, Binju Wang, Xianming Deng, Jifeng Yuan
{"title":"Biosynthesis of Diverse Ephedra-Type Alkaloids via a Newly Identified Enzymatic Cascade.","authors":"Peiling Wu, Ding Luo, Yuezhou Wang, Xiaoxu Shang, Binju Wang, Xianming Deng, Jifeng Yuan","doi":"10.34133/bdr.0048","DOIUrl":null,"url":null,"abstract":"<p><p>Ephedra-type alkaloids represent a large class of natural and synthetic phenylpropanolamine molecules with great pharmaceutical values. However, the existing methods typically rely on chemical approaches to diversify the <i>N</i>-group modification of Ephedra-type alkaloids. Herein, we report a 2-step enzymatic assembly line for creating structurally diverse Ephedra-type alkaloids to replace the conventional chemical modification steps. We first identified a new carboligase from <i>Bacillus subtilis</i> (<i>Bs</i>AlsS, acetolactate synthase) as a robust catalyst to yield different phenylacetylcarbinol (PAC) analogs from diverse aromatic aldehydes with near 100% conversions. Subsequently, we screened imine reductases (IREDs) for the reductive amination of PAC analogs. It was found that IRG02 from <i>Streptomyces albidoflavus</i> had good activities with conversions ranging from 37% to 84% for the reductive alkylamination with diverse amine partners such as allylamine, propargylamine, and cyclopropylamine. Overall, 3 new bio-modifications at the <i>N</i>-group of Ephedra-type alkaloids were established. Taken together, our work lays a foundation for the future implementation of biocatalysis for synthesizing structurally diverse Ephedra-type alkaloids with potential new pharmaceutical applications.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"6 ","pages":"0048"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Ephedra-type alkaloids represent a large class of natural and synthetic phenylpropanolamine molecules with great pharmaceutical values. However, the existing methods typically rely on chemical approaches to diversify the N-group modification of Ephedra-type alkaloids. Herein, we report a 2-step enzymatic assembly line for creating structurally diverse Ephedra-type alkaloids to replace the conventional chemical modification steps. We first identified a new carboligase from Bacillus subtilis (BsAlsS, acetolactate synthase) as a robust catalyst to yield different phenylacetylcarbinol (PAC) analogs from diverse aromatic aldehydes with near 100% conversions. Subsequently, we screened imine reductases (IREDs) for the reductive amination of PAC analogs. It was found that IRG02 from Streptomyces albidoflavus had good activities with conversions ranging from 37% to 84% for the reductive alkylamination with diverse amine partners such as allylamine, propargylamine, and cyclopropylamine. Overall, 3 new bio-modifications at the N-group of Ephedra-type alkaloids were established. Taken together, our work lays a foundation for the future implementation of biocatalysis for synthesizing structurally diverse Ephedra-type alkaloids with potential new pharmaceutical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过新发现的酶级联合成多种麻黄类生物碱
麻黄类生物碱是一大类天然和合成的苯丙羟胺分子,具有极高的药用价值。然而,现有的方法通常依赖化学方法对麻黄类生物碱的 N 基进行多样化修饰。在此,我们报告了一种分两步进行的酶组装生产线,用于制造结构多样化的麻黄类生物碱,以取代传统的化学修饰步骤。我们首先从枯草芽孢杆菌(BsAlsS,乙酰乳酸合成酶)中发现了一种新的碳酰化酶,它是一种强大的催化剂,能从不同的芳香醛中生成不同的苯乙酰基卡宾醇(PAC)类似物,转化率接近 100%。随后,我们筛选了亚胺还原酶(IREDs)用于 PAC 类似物的还原胺化。结果发现,来自白化链霉菌的 IRG02 具有良好的活性,在与烯丙基胺、丙炔基胺和环丙基胺等不同胺伙伴进行还原性烷基化反应时,转化率从 37% 到 84% 不等。总之,我们在麻黄类生物碱的 N 基上建立了 3 种新的生物改性。综上所述,我们的研究工作为今后利用生物催化合成结构多样的麻黄类生物碱奠定了基础,并具有潜在的新医药应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Erratum to "Multidimensional Optimization of Saccharomyces cerevisiae for Carotenoid Overproduction". Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance. Next-Generation Tumor Targeting with Genetically Engineered Cell Membrane-Coated Nanoparticles. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1