Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES PNAS nexus Pub Date : 2024-08-30 eCollection Date: 2024-09-01 DOI:10.1093/pnasnexus/pgae362
Mohamed Abbas Abdelaziz, Wei-Hsin Chen, Yu-Wang Chang, Selomon Assefa Mindaye, Chien-Chang Chen
{"title":"Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain.","authors":"Mohamed Abbas Abdelaziz, Wei-Hsin Chen, Yu-Wang Chang, Selomon Assefa Mindaye, Chien-Chang Chen","doi":"10.1093/pnasnexus/pgae362","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2<sup>+</sup>) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2<sup>+</sup> neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索脊髓星形胶质细胞在酸性物质诱发慢性肌肉疼痛的超痛觉启动信号中的作用。
超痛觉引物是由最初的损伤引发的一种疼痛可塑性,会导致对后续有害刺激的敏感性增强,从而导致动物慢性疼痛的发展。在各种疼痛模型中,星形胶质细胞在调节突触传递方面发挥着积极的作用,但它们在超痛觉诱发中的具体参与仍然难以捉摸。在这里,我们发现脊髓星形胶质细胞在酸性物质诱发的肌肉疼痛小鼠模型中对超痛引物的形成至关重要。我们观察到脊髓星形胶质细胞在首次注射酸液 4 小时后被激活,抑制这种激活可防止随后注射酸液时慢性疼痛的形成。脊髓星形胶质细胞的化学激活模拟了首次酸性物质诱发的超痛引物。我们还证明,首次注射酸后,脊髓磷酸化细胞外调节激酶(pERK)阳性神经元主要是囊泡谷氨酸转运体-2阳性(Vglut2+)神经元,抑制脊髓pERK可防止星形胶质细胞的激活。此外,药理抑制星形胶质细胞谷氨酸转运体谷氨酸转运体-1和谷氨酸-天门冬氨酸转运体也可消除超痛引物。总之,我们的研究结果表明,Vglut2+ 神经元中的 pERK 激活可通过星形胶质细胞谷氨酸转运体激活星形胶质细胞。这一过程最终会通过脊髓 D-丝氨酸建立超痛觉。我们的结论是,脊髓星形胶质细胞在急性疼痛向慢性疼痛的转变过程中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Pollen foraging mediates exposure to dichotomous stressor syndromes in honey bees. Affective polarization is uniformly distributed across American States. Attraction to politically extreme users on social media. Critical thinking and misinformation vulnerability: experimental evidence from Colombia. Descriptive norms can "backfire" in hyper-polarized contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1