Sex estimation from the first and second ribs using 3D postmortem CT images in a Japanese population: A comparison of discriminant analysis and machine learning techniques

Tawachai Monum , Yohsuke Makino , Daisuke Yajima , Go Inoguchi , Fumiko Chiba , Suguru Torimitsu , Maiko Yoshida , Patison Palee , Yumi Hoshioka , Naoki Saito , Hirotaro Iwase
{"title":"Sex estimation from the first and second ribs using 3D postmortem CT images in a Japanese population: A comparison of discriminant analysis and machine learning techniques","authors":"Tawachai Monum ,&nbsp;Yohsuke Makino ,&nbsp;Daisuke Yajima ,&nbsp;Go Inoguchi ,&nbsp;Fumiko Chiba ,&nbsp;Suguru Torimitsu ,&nbsp;Maiko Yoshida ,&nbsp;Patison Palee ,&nbsp;Yumi Hoshioka ,&nbsp;Naoki Saito ,&nbsp;Hirotaro Iwase","doi":"10.1016/j.fsir.2024.100386","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the use of 3D postmortem computed tomography (PMCT) images of the first and second ribs for sex estimation in a Japanese population. Sex estimation models using conventional discriminant analysis and ten machine learning algorithms including logistic regression (LR), Naive Bayes (NB), K-Nearest Neighbors (KNN), decision tree (DT), random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), artificial neural network (ANN), and extra tree (ET), were achieved from PMCT measurements of the first and second rib and the accuracy of models were compared. The results showed that ML algorithms, particularly LR, outperformed discriminant analysis, achieving an accuracy of 83.6 % compared to 79.1 % for stepwise discriminant analysis. This study highlights the potential of 3D PMCT and ML for accurate sex estimation in forensic anthropology.</p></div>","PeriodicalId":36331,"journal":{"name":"Forensic Science International: Reports","volume":"10 ","pages":"Article 100386"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665910724000355/pdfft?md5=da64721ec3c54df285b9cb30377348ad&pid=1-s2.0-S2665910724000355-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International: Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665910724000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the use of 3D postmortem computed tomography (PMCT) images of the first and second ribs for sex estimation in a Japanese population. Sex estimation models using conventional discriminant analysis and ten machine learning algorithms including logistic regression (LR), Naive Bayes (NB), K-Nearest Neighbors (KNN), decision tree (DT), random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), artificial neural network (ANN), and extra tree (ET), were achieved from PMCT measurements of the first and second rib and the accuracy of models were compared. The results showed that ML algorithms, particularly LR, outperformed discriminant analysis, achieving an accuracy of 83.6 % compared to 79.1 % for stepwise discriminant analysis. This study highlights the potential of 3D PMCT and ML for accurate sex estimation in forensic anthropology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在日本人群中使用三维尸检 CT 图像从第一和第二肋骨估测性别:判别分析与机器学习技术的比较
本研究调查了在日本人群中使用第一和第二肋骨的三维死后计算机断层扫描(PMCT)图像进行性别估计的情况。根据第一和第二肋骨的 PMCT 测量结果,使用传统判别分析和十种机器学习算法(包括逻辑回归 (LR)、奈夫贝叶斯 (NB)、K-近邻 (KNN)、决策树 (DT)、随机森林 (RF)、支持向量机 (SVM)、线性判别分析 (LDA)、二次判别分析 (QDA)、人工神经网络 (ANN) 和额外树 (ET))建立了性别估计模型,并对模型的准确性进行了比较。结果显示,ML 算法(尤其是 LR)优于判别分析,准确率达到 83.6%,而逐步判别分析的准确率为 79.1%。这项研究凸显了三维 PMCT 和 ML 在法医人类学中准确估计性别的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forensic Science International: Reports
Forensic Science International: Reports Medicine-Pathology and Forensic Medicine
CiteScore
2.40
自引率
0.00%
发文量
47
审稿时长
57 days
期刊最新文献
Survey of bloodstain pattern analysts regarding pattern classifications on assorted fabrics Missing persons of post-conflict countries: Assessing dental identification through a questionnaire-based study in Syria Technical Report A light touch; Reviewing the relative effectiveness of light sources and physical/chemical techniques for fingermark retrieval in casework From death to the Virgin birth: Multi-analytical investigation of a suspected 16th century painting Medico-legal analysis of the correlation between head trauma and aneurysm rupture: A case report
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1