Semi-supervised regression based on Representation Learning for fermentation processes

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-08-30 DOI:10.1016/j.compchemeng.2024.108856
Jing Liu , Junxian Wang , Jianye Xia , Fengfeng Lv , Dawei Wu
{"title":"Semi-supervised regression based on Representation Learning for fermentation processes","authors":"Jing Liu ,&nbsp;Junxian Wang ,&nbsp;Jianye Xia ,&nbsp;Fengfeng Lv ,&nbsp;Dawei Wu","doi":"10.1016/j.compchemeng.2024.108856","DOIUrl":null,"url":null,"abstract":"<div><p>Biofermentation faces challenges in obtaining real-time quality variables, making it necessary to predict these variables. However, the fermentation process data vary in length and lack sufficient labeled data for model establishment. To solve this problem, this study introduces a framework named RL-SSR(Representation Learning-based Semi-Supervised Regression). First, a data rotation mechanism is designed to address the issue of non-equal-length data. Second, representation learning pre-tasks containing contrastive learning and data reconstruction tasks are implemented to introduce a priori knowledge and numeric features. Finally, the pre-trained model will be fine-tuned with limited labeled data. Experimental results using an industrial-scale penicillin fermentation dataset reveal that RL-SSR outperforms other baseline models, particularly with a small number of labels, confirming the robustness and effectiveness of RL-SSR in the real-time prediction of quality variables in fermentation processes.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"191 ","pages":"Article 108856"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002746","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Biofermentation faces challenges in obtaining real-time quality variables, making it necessary to predict these variables. However, the fermentation process data vary in length and lack sufficient labeled data for model establishment. To solve this problem, this study introduces a framework named RL-SSR(Representation Learning-based Semi-Supervised Regression). First, a data rotation mechanism is designed to address the issue of non-equal-length data. Second, representation learning pre-tasks containing contrastive learning and data reconstruction tasks are implemented to introduce a priori knowledge and numeric features. Finally, the pre-trained model will be fine-tuned with limited labeled data. Experimental results using an industrial-scale penicillin fermentation dataset reveal that RL-SSR outperforms other baseline models, particularly with a small number of labels, confirming the robustness and effectiveness of RL-SSR in the real-time prediction of quality variables in fermentation processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于表征学习的发酵过程半监督回归
生物发酵在获取实时质量变量方面面临挑战,因此有必要对这些变量进行预测。然而,发酵过程数据长短不一,缺乏足够的标注数据来建立模型。为解决这一问题,本研究引入了一个名为 RL-SSR(基于表征学习的半监督回归)的框架。首先,设计了一种数据轮换机制来解决非等长度数据的问题。其次,实施包含对比学习和数据重建任务的表征学习预任务,以引入先验知识和数字特征。最后,将利用有限的标记数据对预训练模型进行微调。使用工业规模青霉素发酵数据集的实验结果表明,RL-SSR 优于其他基线模型,尤其是在标签数量较少的情况下,这证实了 RL-SSR 在发酵过程质量变量实时预测方面的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1