Magnetic control of soft microrobots near step-out frequency: Characterization and analysis

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Computational and structural biotechnology journal Pub Date : 2024-08-30 DOI:10.1016/j.csbj.2024.08.022
{"title":"Magnetic control of soft microrobots near step-out frequency: Characterization and analysis","authors":"","doi":"10.1016/j.csbj.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetically actuated soft microrobots hold promise for biomedical applications that necessitate precise control and adaptability in complex environments. These microrobots can be accurately steered below their step-out frequencies where they exhibit synchronized motion with external magnetic fields. However, the step-out frequencies of soft microrobots have not been investigated yet, as opposed to their rigid counterparts. In this work, we develop an analytic model from the magneto-elastohydrodynamics to establish the relationship between the step-out frequency of soft sperm-like microrobots and their magnetic properties, geometry, wave patterns, and the viscosity of the surrounding medium. We fabricate soft sperm-like microrobots using electrospinning and assess their swimming abilities in mediums with varying viscosities under an oscillating magnetic field. We observe slight variations in wave patterns of the sperm-like microrobots as the actuation frequency changes. Our theoretical model, which analyzes these wave patterns observed without exceeding the step-out threshold, quantitatively agrees with the experimentally measured step-out frequencies. By accurately predicting the step-out frequency, the proposed model lays a foundation for achieving precise control over individual soft microrobots and enabling selective control within a swarm when executing biomedical tasks.</p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002812/pdfft?md5=c76ce6c9daa7e1e10e5d1c11db2a3893&pid=1-s2.0-S2001037024002812-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002812","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetically actuated soft microrobots hold promise for biomedical applications that necessitate precise control and adaptability in complex environments. These microrobots can be accurately steered below their step-out frequencies where they exhibit synchronized motion with external magnetic fields. However, the step-out frequencies of soft microrobots have not been investigated yet, as opposed to their rigid counterparts. In this work, we develop an analytic model from the magneto-elastohydrodynamics to establish the relationship between the step-out frequency of soft sperm-like microrobots and their magnetic properties, geometry, wave patterns, and the viscosity of the surrounding medium. We fabricate soft sperm-like microrobots using electrospinning and assess their swimming abilities in mediums with varying viscosities under an oscillating magnetic field. We observe slight variations in wave patterns of the sperm-like microrobots as the actuation frequency changes. Our theoretical model, which analyzes these wave patterns observed without exceeding the step-out threshold, quantitatively agrees with the experimentally measured step-out frequencies. By accurately predicting the step-out frequency, the proposed model lays a foundation for achieving precise control over individual soft microrobots and enabling selective control within a swarm when executing biomedical tasks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
接近阶跃频率时对软微型机器人的磁控制:特征描述与分析
磁驱动软微型机器人有望应用于需要精确控制和适应复杂环境的生物医学领域。这些微机器人可以在低于其步进频率时精确转向,在步进频率下,它们会表现出与外部磁场同步的运动。然而,与刚性微机器人相比,软性微机器人的步出频率尚未得到研究。在这项研究中,我们建立了一个磁-流体力学分析模型,以确定软精子状微型机器人的步出频率与其磁特性、几何形状、波形和周围介质的粘度之间的关系。我们利用电纺丝技术制造了软精子状微型机器人,并评估了它们在振荡磁场作用下在不同粘度介质中的游动能力。我们观察到,随着致动频率的变化,类精子微机器人的波形也会发生细微的变化。我们的理论模型分析了在不超过阶跃阈值的情况下观察到的这些波型,在数量上与实验测量的阶跃频率一致。通过准确预测阶跃频率,所提出的模型为实现对单个软微型机器人的精确控制以及在执行生物医学任务时实现对蜂群的选择性控制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
期刊最新文献
Corrigendum to "Cryo-EM reveals architectural diversity in active rotavirus particles" [Comput Struct Biotechnol J 31 (17) (2019) 1178-1183]. Spatial domains identification in spatial transcriptomics using modality-aware and subspace-enhanced graph contrastive learning. A systematic review on the state-of-the-art and research gaps regarding inorganic and carbon-based multicomponent and high-aspect ratio nanomaterials EEfinder, a general purpose tool for identification of bacterial and viral endogenized elements in eukaryotic genomes. Using patient-generated health data more efficient and effectively to facilitate the implementation of value-based healthcare in the EU – Innovation report
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1