An improved DFD method for three-dimensional displacement measurement of vision-based tactile sensor

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-03 DOI:10.1016/j.sna.2024.115863
Zenghong Ma , Li Tan , Wei Zeng , Xiaoqiang Du , Leiying He , Chuanyu Wu
{"title":"An improved DFD method for three-dimensional displacement measurement of vision-based tactile sensor","authors":"Zenghong Ma ,&nbsp;Li Tan ,&nbsp;Wei Zeng ,&nbsp;Xiaoqiang Du ,&nbsp;Leiying He ,&nbsp;Chuanyu Wu","doi":"10.1016/j.sna.2024.115863","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, traditional tactile sensors based on the principles of capacitance or piezoelectricity have complex structures and difficulty in obtaining tactile information. A vision-based tactile sensor is introduced which can realize visual measurement of three-dimensional displacement in this paper. The vision-based tactile sensor is mainly composed of an elastomer embedded with marker point array, a transparent acrylic plate, 8 LED lights and a micro monocular camera. The elastomer deforms when the tactile sensor contacts an object, and the micro monocular camera is used to capture the elastomer deformation and transmit it to the computer in the form of image, and then the three-dimensional displacement information is obtained by processing the image. In order to more accurately recover the missing dimensional information in the three-dimensional displacement detection of monocular camera, an improved DFD (Depth from Defocus) method based on finite element theory is proposed in this paper. It is verified by experiments that the improved DFD method proposed in this paper can measure the three-dimensional displacement information more accurately compared with the DFD method. In addition, an experiment is conducted to prove the robustness of the improved DFD method on the robotic gripper. The experimental results demonstrate that the three-dimensional displacement measurement method proposed in this paper can provide technical support for the design and development of vision-based tactile sensors.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008574","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, traditional tactile sensors based on the principles of capacitance or piezoelectricity have complex structures and difficulty in obtaining tactile information. A vision-based tactile sensor is introduced which can realize visual measurement of three-dimensional displacement in this paper. The vision-based tactile sensor is mainly composed of an elastomer embedded with marker point array, a transparent acrylic plate, 8 LED lights and a micro monocular camera. The elastomer deforms when the tactile sensor contacts an object, and the micro monocular camera is used to capture the elastomer deformation and transmit it to the computer in the form of image, and then the three-dimensional displacement information is obtained by processing the image. In order to more accurately recover the missing dimensional information in the three-dimensional displacement detection of monocular camera, an improved DFD (Depth from Defocus) method based on finite element theory is proposed in this paper. It is verified by experiments that the improved DFD method proposed in this paper can measure the three-dimensional displacement information more accurately compared with the DFD method. In addition, an experiment is conducted to prove the robustness of the improved DFD method on the robotic gripper. The experimental results demonstrate that the three-dimensional displacement measurement method proposed in this paper can provide technical support for the design and development of vision-based tactile sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的触觉传感器三维位移测量的改进 DFD 方法
目前,基于电容或压电原理的传统触觉传感器结构复杂,难以获得触觉信息。本文介绍了一种基于视觉的触觉传感器,可实现三维位移的视觉测量。基于视觉的触觉传感器主要由嵌入标记点阵列的弹性体、透明亚克力板、8 个 LED 灯和微型单目摄像头组成。当触觉传感器接触到物体时,弹性体会发生形变,微型单目摄像头用于捕捉弹性体的形变,并以图像的形式传输到计算机,然后通过处理图像获得三维位移信息。为了更准确地恢复单目摄像头三维位移检测中缺失的尺寸信息,本文提出了一种基于有限元理论的改进型 DFD(离焦深度)方法。实验验证了本文提出的改进 DFD 方法与 DFD 方法相比,能更精确地测量三维位移信息。此外,本文还通过实验证明了改进 DFD 方法在机械手上的鲁棒性。实验结果表明,本文提出的三维位移测量方法可以为基于视觉的触觉传感器的设计和开发提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Corrigendum to "The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma" [J. Ethnopharmacol. 318 (2024) 116862]. Corrigendum to "Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway" [J. Ethnopharmacol. 319 (2024) 117266]. Corrigendum to "The antiviral effect and potential mechanism of Houttuynia cordata Thunb. (HC) against coxsackievirus A4" [J. Ethnopharmacol. 337, part 3 (2024) 118975]. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1