Coupled model for liquid lithium plasma facing components

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Fusion Engineering and Design Pub Date : 2024-09-03 DOI:10.1016/j.fusengdes.2024.114651
Andrei Khodak, Eric Emdee, Robert Goldston, Rajesh Maingi
{"title":"Coupled model for liquid lithium plasma facing components","authors":"Andrei Khodak,&nbsp;Eric Emdee,&nbsp;Robert Goldston,&nbsp;Rajesh Maingi","doi":"10.1016/j.fusengdes.2024.114651","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical analysis provides the design choice and operating window of liquid metal Plasma Facing Components (PFC) concepts. Coupled analysis of boundary plasma together with the surrounding boundary structures is required. To achieve this goal, PPPL is developing a comprehensive multi-physics model for modeling of PFCs in fusion devices. The model includes the fluid-kinetic code SOLPS-ITER and the flow and heat transfer code CFX from ANSYS. SOLPS-ITER was augmented with a liquid metal boundary condition algorithm, allowing direct two-way coupling of the plasma analysis with the two-dimensional analytical slab flow model which includes heat convection in the liquid metal PFC. The target heat flux resulting from this coupled analysis is used as a boundary condition for detailed 3D Computational Fluid Dynamics (CFD) Magneto Hydro Dynamics (MHD) and heat transfer analysis. A new formulation of MHD equations is introduced in the numerical procedure ensuring current conservation of the discretized equations. Results of the 3D analysis are used for final validation of the coupled model. A PFC design where a porous wall is used to stabilize the liquid metal surface, while MHD drive is used to push the liquid metal flow inside the PFC, will be investigated in the regimes where vapor shielding is created for enhanced volumetric plasma heat dissipation.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical analysis provides the design choice and operating window of liquid metal Plasma Facing Components (PFC) concepts. Coupled analysis of boundary plasma together with the surrounding boundary structures is required. To achieve this goal, PPPL is developing a comprehensive multi-physics model for modeling of PFCs in fusion devices. The model includes the fluid-kinetic code SOLPS-ITER and the flow and heat transfer code CFX from ANSYS. SOLPS-ITER was augmented with a liquid metal boundary condition algorithm, allowing direct two-way coupling of the plasma analysis with the two-dimensional analytical slab flow model which includes heat convection in the liquid metal PFC. The target heat flux resulting from this coupled analysis is used as a boundary condition for detailed 3D Computational Fluid Dynamics (CFD) Magneto Hydro Dynamics (MHD) and heat transfer analysis. A new formulation of MHD equations is introduced in the numerical procedure ensuring current conservation of the discretized equations. Results of the 3D analysis are used for final validation of the coupled model. A PFC design where a porous wall is used to stabilize the liquid metal surface, while MHD drive is used to push the liquid metal flow inside the PFC, will be investigated in the regimes where vapor shielding is created for enhanced volumetric plasma heat dissipation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向组件的液态锂等离子体耦合模型
数值分析为液态金属等离子面组件(PFC)概念提供了设计选择和运行窗口。需要对边界等离子体和周围边界结构进行耦合分析。为实现这一目标,PPPL 正在开发一个用于聚变装置中 PFC 建模的综合多物理场模型。该模型包括流体动力学代码 SOLPS-ITER 和 ANSYS 的流动与传热代码 CFX。SOLPS-ITER 使用液态金属边界条件算法进行了增强,允许等离子体分析与包括液态金属 PFC 中热对流的二维分析板坯流模型直接双向耦合。这种耦合分析得出的目标热通量被用作详细三维计算流体动力学(CFD)磁水动力学(MHD)和传热分析的边界条件。数值程序中引入了新的 MHD 方程,以确保离散方程的电流守恒。三维分析结果用于耦合模型的最终验证。将研究一种 PFC 设计,其中多孔壁用于稳定液态金属表面,而 MHD 驱动则用于推动 PFC 内部的液态金属流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
期刊最新文献
Direct internal recycling fractions approaching unity Experimental study on the critical current in highly flexible REBCO cables under copper tube compaction Parametric study of liquid metal flows in conducting circular ducts in a strong nonuniform magnetic field Thermal hydraulic and material analysis of upgraded flat-type Graphite divertor mock-up for Pakistan Spherical Tokamak (PST) Numerical structural analysis and flow-induced vibration study in support of the design of the EU-DEMO once-through steam generator mock-up for the STEAM experimental facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1