{"title":"Deep video compression based on Long-range Temporal Context Learning","authors":"Kejun Wu , Zhenxing Li , You Yang, Qiong Liu","doi":"10.1016/j.cviu.2024.104127","DOIUrl":null,"url":null,"abstract":"<div><p>Video compression allows for efficient storage and transmission of data, benefiting imaging and vision applications, e.g. computational imaging, photography, and displays by delivering high-quality videos. To exploit more informative contexts of video, we propose DVCL, a novel <strong>D</strong>eep <strong>V</strong>ideo <strong>C</strong>ompression based on <strong>L</strong>ong-range Temporal Context Learning. Aiming at high coding performance, this new compression paradigm makes full use of long-range temporal correlations derived from multiple reference frames to learn richer contexts. Motion vectors (MVs) are estimated to represent the motion relations of videos. By employing MVs, a long-range temporal context learning (LTCL) module is presented to extract context information from multiple reference frames, such that a more accurate and informative temporal contexts can be learned and constructed. The long-range temporal contexts serve as conditions and generate the predicted frames by contextual encoder and decoder. To address the challenge of imbalanced training, we develop a multi-stage training strategy to ensure the whole DVCL framework is trained progressively and stably. Extensive experiments demonstrate the proposed DVCL achieves the highest objective and subjective quality, while maintaining relatively low complexity. Specifically, 25.30% and 45.75% bitrate savings on average can be obtained than x265 codec at the same PSNR and MS-SSIM, respectively.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"248 ","pages":"Article 104127"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422400208X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Video compression allows for efficient storage and transmission of data, benefiting imaging and vision applications, e.g. computational imaging, photography, and displays by delivering high-quality videos. To exploit more informative contexts of video, we propose DVCL, a novel Deep Video Compression based on Long-range Temporal Context Learning. Aiming at high coding performance, this new compression paradigm makes full use of long-range temporal correlations derived from multiple reference frames to learn richer contexts. Motion vectors (MVs) are estimated to represent the motion relations of videos. By employing MVs, a long-range temporal context learning (LTCL) module is presented to extract context information from multiple reference frames, such that a more accurate and informative temporal contexts can be learned and constructed. The long-range temporal contexts serve as conditions and generate the predicted frames by contextual encoder and decoder. To address the challenge of imbalanced training, we develop a multi-stage training strategy to ensure the whole DVCL framework is trained progressively and stably. Extensive experiments demonstrate the proposed DVCL achieves the highest objective and subjective quality, while maintaining relatively low complexity. Specifically, 25.30% and 45.75% bitrate savings on average can be obtained than x265 codec at the same PSNR and MS-SSIM, respectively.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems