Metal-based compounds: Synthesis and characterization of new thiazole-based iridium and palladium complexes with potential anticancer and other biological activities
{"title":"Metal-based compounds: Synthesis and characterization of new thiazole-based iridium and palladium complexes with potential anticancer and other biological activities","authors":"","doi":"10.1016/j.poly.2024.117211","DOIUrl":null,"url":null,"abstract":"<div><p>Thiazoles and their derivatives are one of the most active classes of compounds known for their wide spectrum of bioactivity. Metal complexes, based on them, show antitumor potential that is attractive for investigations. Herein, we report 6 new biologically active thiazole-based complexes have been synthesized. The iridium- and palladium-based coordination compounds obtained by the precipitation method were characterized using elemental analysis (EA), Fourier-transform infrared spectroscopy (FTIR), magnetic measurements, thermogravimetric analysis coupled with mass spectrometry (TGA-MS), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Spectroscopic data helped to propose the formulas of the complexes and indicated that all ligands acted in a monodentate manner. Water molecules were identified by thermal analysis and FTIR spectroscopy. Mathematical analysis and evaluation of thermodynamic parameters including entropy (ΔS), Gibbs free energy (ΔG), and activation energy (E) were performed using the Coats–Redfern method for all complexes. The biological potential (anticancer, antibacterial, and antifungal properties) of compounds was analyzed by biological evaluation studies. Investigated CT-DNA studies revealed that the prepared compounds were intercalatively bound to the DNA. Cytotoxicity analyses showed that complexation with Ir(III) increased the toxicity of L2 towards both tested cell lines (LN-229 and MDA-MB-231), while complexation of L3 with Pd(II) significantly increased cytotoxic activity against LN-229. Due to this, the further biological studies, such as apoptosis/necrosis detection, cell cycle analysis and JC-1 fluorescence measurements were performed on this pair of compounds.</p></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0277538724003875/pdfft?md5=011ba02aeaa88f90ec95ec92d5a66aad&pid=1-s2.0-S0277538724003875-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724003875","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Thiazoles and their derivatives are one of the most active classes of compounds known for their wide spectrum of bioactivity. Metal complexes, based on them, show antitumor potential that is attractive for investigations. Herein, we report 6 new biologically active thiazole-based complexes have been synthesized. The iridium- and palladium-based coordination compounds obtained by the precipitation method were characterized using elemental analysis (EA), Fourier-transform infrared spectroscopy (FTIR), magnetic measurements, thermogravimetric analysis coupled with mass spectrometry (TGA-MS), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Spectroscopic data helped to propose the formulas of the complexes and indicated that all ligands acted in a monodentate manner. Water molecules were identified by thermal analysis and FTIR spectroscopy. Mathematical analysis and evaluation of thermodynamic parameters including entropy (ΔS), Gibbs free energy (ΔG), and activation energy (E) were performed using the Coats–Redfern method for all complexes. The biological potential (anticancer, antibacterial, and antifungal properties) of compounds was analyzed by biological evaluation studies. Investigated CT-DNA studies revealed that the prepared compounds were intercalatively bound to the DNA. Cytotoxicity analyses showed that complexation with Ir(III) increased the toxicity of L2 towards both tested cell lines (LN-229 and MDA-MB-231), while complexation of L3 with Pd(II) significantly increased cytotoxic activity against LN-229. Due to this, the further biological studies, such as apoptosis/necrosis detection, cell cycle analysis and JC-1 fluorescence measurements were performed on this pair of compounds.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.