Simulating the anti-aggregative effect of fasudil in early dimerisation process of α-synuclein

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biophysical chemistry Pub Date : 2024-08-30 DOI:10.1016/j.bpc.2024.107319
{"title":"Simulating the anti-aggregative effect of fasudil in early dimerisation process of α-synuclein","authors":"","doi":"10.1016/j.bpc.2024.107319","DOIUrl":null,"url":null,"abstract":"<div><p>The aggregation of the protein α-synuclein into amyloid deposits is associated with multiple neurological disorders, including Parkinson's disease. Soluble amyloid oligomers are reported to exhibit higher toxicity than insoluble amyloid fibrils, with dimers being the smallest toxic oligomer. Small molecule drugs, such as fasudil, have shown potential in targeting α-synuclein aggregation and reducing its toxicity. In this study, we use atomistic molecular dynamics simulations to demonstrate how fasudil affects the earliest stage of aggregation, namely dimerization. Our results show that the presence of fasudil reduces the propensity for intermolecular contact formation between protein chains. Consistent with previous reports, our analysis confirms that fasudil predominantly interacts with the negatively charged C-terminal region of α-synuclein. However, we also observe transient interactions with residues in the charged N-terminal and hydrophobic NAC regions. Our simulations indicate that while fasudil prominently interacts with the C-terminal region, it is the transient interactions with residues in the N-terminal and NAC regions that effectively block the formation of intermolecular contacts between protein chains and prevent early dimerization of this disordered protein.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001480","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aggregation of the protein α-synuclein into amyloid deposits is associated with multiple neurological disorders, including Parkinson's disease. Soluble amyloid oligomers are reported to exhibit higher toxicity than insoluble amyloid fibrils, with dimers being the smallest toxic oligomer. Small molecule drugs, such as fasudil, have shown potential in targeting α-synuclein aggregation and reducing its toxicity. In this study, we use atomistic molecular dynamics simulations to demonstrate how fasudil affects the earliest stage of aggregation, namely dimerization. Our results show that the presence of fasudil reduces the propensity for intermolecular contact formation between protein chains. Consistent with previous reports, our analysis confirms that fasudil predominantly interacts with the negatively charged C-terminal region of α-synuclein. However, we also observe transient interactions with residues in the charged N-terminal and hydrophobic NAC regions. Our simulations indicate that while fasudil prominently interacts with the C-terminal region, it is the transient interactions with residues in the N-terminal and NAC regions that effectively block the formation of intermolecular contacts between protein chains and prevent early dimerization of this disordered protein.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟法舒地尔在α-突触核蛋白早期二聚化过程中的抗聚集作用
蛋白质α-突触核蛋白聚集成淀粉样沉积物与包括帕金森病在内的多种神经系统疾病有关。据报道,可溶性淀粉样蛋白寡聚体的毒性高于不可溶性淀粉样蛋白纤维,二聚体是毒性最小的寡聚体。小分子药物,如法舒地尔,在靶向α-突触核蛋白聚集和降低其毒性方面已显示出潜力。在本研究中,我们使用原子分子动力学模拟来证明法舒地尔如何影响聚集的最早阶段,即二聚化。我们的结果表明,法舒地尔的存在降低了蛋白质链之间形成分子间接触的倾向。与之前的报告一致,我们的分析证实法舒地尔主要与α-突触核蛋白带负电荷的C端区域相互作用。不过,我们也观察到与带电 N 端和疏水 NAC 区域残基的瞬时相互作用。我们的模拟结果表明,虽然法舒地尔主要与 C 端区域相互作用,但与 N 端和 NAC 区域残基的瞬时相互作用才有效地阻止了蛋白质链之间分子间接触的形成,并阻止了这种无序蛋白质的早期二聚化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
期刊最新文献
The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3’ UTR to regulate translation Understanding Cu+2 binding with DNA: A molecular dynamics study comparing Cu2+ and Mg2+ binding to the Dickerson DNA Biophysical significance of fluorescence spectroscopy in deciphering nucleic acid dynamics: From fundamental to recent advancements In vitro and in silico effect of meldrum's acid-derived compounds on Staphylococcus aureus strains as NorA efflux pump inhibitors Solubilisation & purification of membrane proteins using benzylamine-modified SMA polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1