Evaluation of speckle filtering configurations on Sentinel-1 SAR backscatter analysis ready data (S1ARD) preparation framework on the google earth engine platform for supporting rice monitoring activities
{"title":"Evaluation of speckle filtering configurations on Sentinel-1 SAR backscatter analysis ready data (S1ARD) preparation framework on the google earth engine platform for supporting rice monitoring activities","authors":"Dandy Aditya Novresiandi , Andie Setiyoko , Novie Indriasari , Kiki Winda Veronica , Marendra Eko Budiono , Dianovita , Qonita Amriyah , Mokhamad Subehi","doi":"10.1016/j.rsase.2024.101337","DOIUrl":null,"url":null,"abstract":"<div><p>Implementing the Sentinel-1 SAR backscatter analysis ready data (S1ARD) preparation framework to Sentinel-1 C-band SAR data in the Google Earth Engine platform potentially enhances the quality of SAR data, facilitating the advancement of wide-scale, large-impact, and continuous SAR-supported RS applications such those for rice monitoring activities. Nevertheless, there is a lack of published works assessing different speckle filtering configurations available within the S1ARD preparation framework, particularly those directly associated with rice monitoring activities. This study quantitatively evaluated the performance of available speckle filtering parameters on the S1ARD preparation framework, analyzed their derived backscatter values over a rice-growing cycle, and utilized produced datasets as inputs to classify distinct classes of rice transplanting periods in two study areas by applying the random forest classifier. The backscatter analysis demonstrated that the mono-temporal speckle filtering frameworks yielded elevated backscatter values compared to the unfiltered dataset, which exhibited higher values than those derived by the multi-temporal frameworks. Furthermore, filtered datasets increased classification accuracies ranging from 9.30 - 13.95% and 17.23 - 25.94% in study area 1 and between 4.69 - 15.63% and 9.28 - 29.75% in study area 2, for OA and Kappa, respectively, than those produced by unfiltered datasets. Overall, the multi-temporal speckle filtering framework with a Lee filter, 15 number-of-image, and a 7 x 7 window configuration was recommended to apply to the S1ARD preparation framework to assist SAR-supported RS-based rice monitoring activities. Finally, the findings of this work offer direct guidance and recommendations about the behavior and contributions of Sentinel-1 C-band SAR data applied with distinct speckle filtering configurations yielded by benefiting the S1ARD preparation framework for aiding SAR-supported RS-based rice monitoring activities.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101337"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Implementing the Sentinel-1 SAR backscatter analysis ready data (S1ARD) preparation framework to Sentinel-1 C-band SAR data in the Google Earth Engine platform potentially enhances the quality of SAR data, facilitating the advancement of wide-scale, large-impact, and continuous SAR-supported RS applications such those for rice monitoring activities. Nevertheless, there is a lack of published works assessing different speckle filtering configurations available within the S1ARD preparation framework, particularly those directly associated with rice monitoring activities. This study quantitatively evaluated the performance of available speckle filtering parameters on the S1ARD preparation framework, analyzed their derived backscatter values over a rice-growing cycle, and utilized produced datasets as inputs to classify distinct classes of rice transplanting periods in two study areas by applying the random forest classifier. The backscatter analysis demonstrated that the mono-temporal speckle filtering frameworks yielded elevated backscatter values compared to the unfiltered dataset, which exhibited higher values than those derived by the multi-temporal frameworks. Furthermore, filtered datasets increased classification accuracies ranging from 9.30 - 13.95% and 17.23 - 25.94% in study area 1 and between 4.69 - 15.63% and 9.28 - 29.75% in study area 2, for OA and Kappa, respectively, than those produced by unfiltered datasets. Overall, the multi-temporal speckle filtering framework with a Lee filter, 15 number-of-image, and a 7 x 7 window configuration was recommended to apply to the S1ARD preparation framework to assist SAR-supported RS-based rice monitoring activities. Finally, the findings of this work offer direct guidance and recommendations about the behavior and contributions of Sentinel-1 C-band SAR data applied with distinct speckle filtering configurations yielded by benefiting the S1ARD preparation framework for aiding SAR-supported RS-based rice monitoring activities.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems