{"title":"Waterborne polyurethane based on dual crosslinked structure with excellent mechanical properties, water and corrosion resistance","authors":"","doi":"10.1016/j.porgcoat.2024.108784","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the increased presence of hydrophilic groups in waterborne polyurethane (WPU) coatings, consequently leading to compromised corrosion resistance and reduced service life. To solve the problem, a series of waterborne polyurethanes were synthesized via internal emulsification using dicyclohexylmethane diisocyanate (HMDI) and polytetrahydrofuran ether diol (PTMG) as the primary raw materials. The triethanolamine (TEOA) was used as a crosslinking agent and corrosion inhibitor, while N- (β-aminoethyl) -γ-aminopropyl trimethyl-(ethyl) oxy-silane (KH-792) was introduced as a coupling agent to establish a system with a dual crosslinking structure. The crosslinking degree of the double network structure can be adjusted by changing the amount of KH-792. Then the influence of KH-792 content on the performance of SWPU dispersions and film were studied. The research shows that the waterborne polyurethane with a KH-792 content of 3 wt% exhibits exceptional mechanical strength, reaching 34.64 MPa, with only 3.32 % water absorption and an adhesion strength of 2.64 MPa. Furthermore, it exhibited a high impedance modulus (2976.4 Ω/cm<sup>2</sup>) at low frequencies. Therefore, this compound holds promising potential for application in anti-corrosion coatings field.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005769","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the increased presence of hydrophilic groups in waterborne polyurethane (WPU) coatings, consequently leading to compromised corrosion resistance and reduced service life. To solve the problem, a series of waterborne polyurethanes were synthesized via internal emulsification using dicyclohexylmethane diisocyanate (HMDI) and polytetrahydrofuran ether diol (PTMG) as the primary raw materials. The triethanolamine (TEOA) was used as a crosslinking agent and corrosion inhibitor, while N- (β-aminoethyl) -γ-aminopropyl trimethyl-(ethyl) oxy-silane (KH-792) was introduced as a coupling agent to establish a system with a dual crosslinking structure. The crosslinking degree of the double network structure can be adjusted by changing the amount of KH-792. Then the influence of KH-792 content on the performance of SWPU dispersions and film were studied. The research shows that the waterborne polyurethane with a KH-792 content of 3 wt% exhibits exceptional mechanical strength, reaching 34.64 MPa, with only 3.32 % water absorption and an adhesion strength of 2.64 MPa. Furthermore, it exhibited a high impedance modulus (2976.4 Ω/cm2) at low frequencies. Therefore, this compound holds promising potential for application in anti-corrosion coatings field.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.